ﻻ يوجد ملخص باللغة العربية
Recent progress in understanding subcritical transition to turbulence is based on the concept of the edge, the manifold separating the basins of attraction of the laminar and the turbulent state. Originally developed in numerical studies of parallel shear flows with a linearly stable base flow, this concept is adapted here to the case of a spatially developing Blasius boundary layer. Longer time horizons fundamentally change the nature of the problem due to the loss of stability of the base flow due to Tollmien--Schlichting (TS) waves. We demonstrate, using a moving box technique, that efficient long-time tracking of edge trajectories is possible for the parameter range relevant to bypass transition, even if the asymptotic state itself remains out of reach. The flow along the edge trajectory features streak switching observed for the first time in the Blasius boundary layer. At long enough times, TS waves co-exist with the coherent structure characteristic of edge trajectories. In this situation we suggest a reinterpretation of the edge as a manifold dividing the state space between the two main types of boundary layer transition, i.e. bypass transition and classical transition.
This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as
Subcritical transition to turbulence in spatially developing boundary layer flows can be triggered efficiently by finite amplitude perturbations. In this work, we employ adjoint-based optimization to identify optimal initial perturbations in the Blas
In this paper, we derive consistent shallow water equations for bi-layer flows of Newtonian fluids flowing down a ramp. We carry out a complete spectral analysis of steady flows in the low frequency regime and show the occurence of hydrodynamic insta
Numerical analysis of a shear layer between a cool liquid n-decane hydrocarbon and a hot oxygen gas at supercritical pressures shows that a well-defined phase equilibrium can be established. Variable properties are considered with the product of dens
In linearly stable shear flows at moderate Re, turbulence spontaneously decays despite the existence of a codimension-one manifold, termed the edge of chaos, which separates decaying perturbations from those triggering turbulence. We statistically an