ترغب بنشر مسار تعليمي؟ اضغط هنا

An Integrated Photonic Platform for Rare-Earth Ions in Thin Film Lithium Niobate

156   0   0.0 ( 0 )
 نشر من قبل Subhojit Dutta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rare-earth ion ensembles doped in single crystals are a promising materials system with widespread applications in optical signal processing, lasing, and quantum information processing. Incorporating rare-earth ions into integrated photonic devices could enable compact lasers and modulators, as well as on-chip optical quantum memories for classical and quantum optical applications. To this end, a thin film single crystalline wafer structure that is compatible with planar fabrication of integrated photonic devices would be highly desirable. However, incorporating rare-earth ions into a thin film form-factor while preserving their optical properties has proven challenging. We demonstrate an integrated photonic platform for rare-earth ions doped in a single crystalline thin film on insulator. The thin film is composed of lithium niobate doped with Tm3+. The ions in the thin film exhibit optical lifetimes identical to those measured in bulk crystals. We show narrow spectral holes in a thin film waveguide that require up to 2 orders of magnitude lower power to generate than previously reported bulk waveguides. Our results pave way for scalable on-chip lasers, optical signal processing devices, and integrated optical quantum memories.



قيم البحث

اقرأ أيضاً

As an active material with favorable linear and nonlinear optical properties, thin-film lithium niobate has demonstrated its potential in integrated photonics. Integration with rare-earth ions, which are promising candidates for quantum memories and transducers, will enrich the system with new applications in quantum information processing. Here, we investigate the optical properties at 1.5 micron wavelengths of rare-earth ions (Er$^{3+}$) implanted in thin-film lithium niobate waveguides and micro-ring resonators. Optical quality factors near a million after post annealing show that ion implantation damage can be successfully repaired. The transition linewidth and fluorescence lifetime of erbium ions are characterized, revealing values comparable to bulk-doped crystals. The ion-cavity coupling is observed through a Purcell enhanced fluorescence, from which a Purcell factor of ~3.8 is extracted. This platform is compatible with top-down lithography processes and leads to a scalable path for controlling spin-photon interfaces in photonic circuits.
105 - Di Zhu , Linbo Shao , Mengjie Yu 2021
Lithium niobate (LN), an outstanding and versatile material, has influenced our daily life for decades: from enabling high-speed optical communications that form the backbone of the Internet to realizing radio-frequency filtering used in our cell pho nes. This half-century-old material is currently embracing a revolution in thin-film LN integrated photonics. The success of manufacturing wafer-scale, high-quality, thin films of LN on insulator (LNOI), accompanied with breakthroughs in nanofabrication techniques, have made high-performance integrated nanophotonic components possible. With rapid development in the past few years, some of these thin-film LN devices, such as optical modulators and nonlinear wavelength converters, have already outperformed their legacy counterparts realized in bulk LN crystals. Furthermore, the nanophotonic integration enabled ultra-low-loss resonators in LN, which unlocked many novel applications such as optical frequency combs and quantum transducers. In this Review, we cover -- from basic principles to the state of the art -- the diverse aspects of integrated thin-film LN photonics, including the materials, basic passive components, and various active devices based on electro-optics, all-optical nonlinearities, and acousto-optics. We also identify challenges that this platform is currently facing and point out future opportunities. The field of integrated LNOI photonics is advancing rapidly and poised to make critical impacts on a broad range of applications in communication, signal processing, and quantum information.
143 - Uday Saha , Edo Waks 2021
Trapped ions are excellent candidates for quantum computing and quantum networks because of their long coherence times, ability to generate entangled photons as well as high fidelity single- and two-qubit gates. To scale up trapped ion quantum comput ing, we need a Bell-state analyzer on a reconfigurable platform that can herald high fidelity entanglement between ions. In this work, we design a photonic Bell-state analyzer on a reconfigurable thin film lithium niobate platform for polarization-encoded qubits. We optimize the device to achieve high fidelity entanglement between two trapped ions and find >99% fidelity. The proposed device can scale up trapped ion quantum computing as well as other optically active spin qubits, such as color centers in diamond, quantum dots, and rare-earth ions.
Materials with strong $chi^{(2)}$ optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-loss $chi^{(2)}$ materials remains challenging and limi ts the threshold power of on-chip $chi^{(2)}$ OPO. Here we report the first on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase matched, high-quality microring resonator, whose threshold power ($sim$30 $mu$W) is 400 times lower than that in previous $chi^{(2)}$ integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained at a pump power of 93 $mu$W. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase matching and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides an potential platform for realizing photonic neural networks.
121 - Zhaoxi Chen , Qing Xu , Ke Zhang 2021
Lithium niobate on insulator (LNOI) is an emerging photonic platform with great promises for future optical communications, nonlinear optics and microwave photonics. An important integrated photonic building block, active waveguide amplifiers, howeve r, is still missing in the LNOI platform. Here we report an efficient and compact waveguide amplifier based on erbium-doped LNOI waveguides, realized by a sequence of erbium-doped crystal growth, ion slicing and lithography-based waveguide fabrication. Using a compact 5-mm-long waveguide, we demonstrate on-chip net gain of > 5 dB for 1530-nm signal light with a relatively low pump power of 21 mW at 980 nm. The efficient LNOI waveguide amplifiers could become an important fundamental element in future lithium niobate photonic integrated circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا