ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Hierarchical Importance Attribution: Explaining Compositional Semantics for Neural Sequence Models

130   0   0.0 ( 0 )
 نشر من قبل Xisen Jin
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The impressive performance of neural networks on natural language processing tasks attributes to their ability to model complicated word and phrase compositions. To explain how the model handles semantic compositions, we study hierarchical explanation of neural network predictions. We identify non-additivity and context independent importance attributions within hierarchies as two desirable properties for highlighting word and phrase compositions. We show some prior efforts on hierarchical explanations, e.g. contextual decomposition, do not satisfy the desired properties mathematically, leading to inconsistent explanation quality in different models. In this paper, we start by proposing a formal and general way to quantify the importance of each word and phrase. Following the formulation, we propose Sampling and Contextual Decomposition (SCD) algorithm and Sampling and Occlusion (SOC) algorithm. Human and metrics evaluation on both LSTM models and BERT Transformer models on multiple datasets show that our algorithms outperform prior hierarchical explanation algorithms. Our algorithms help to visualize semantic composition captured by models, extract classification rules and improve human trust of models. Project page: https://inklab.usc.edu/hiexpl/



قيم البحث

اقرأ أيضاً

567 - Edward Grefenstette 2013
This thesis is about the problem of compositionality in distributional semantics. Distributional semantics presupposes that the meanings of words are a function of their occurrences in textual contexts. It models words as distributions over these con texts and represents them as vectors in high dimensional spaces. The problem of compositionality for such models concerns itself with how to produce representations for larger units of text by composing the representations of smaller units of text. This thesis focuses on a particular approach to this compositionality problem, namely using the categorical framework developed by Coecke, Sadrzadeh, and Clark, which combines syntactic analysis formalisms with distributional semantic representations of meaning to produce syntactically motivated composition operations. This thesis shows how this approach can be theoretically extended and practically implemented to produce concrete compositional distributional models of natural language semantics. It furthermore demonstrates that such models can perform on par with, or better than, other competing approaches in the field of natural language processing. There are three principal contributions to computational linguistics in this thesis. The first is to extend the DisCoCat framework on the syntactic front and semantic front, incorporating a number of syntactic analysis formalisms and providing learning procedures allowing for the generation of concrete compositional distributional models. The second contribution is to evaluate the models developed from the procedures presented here, showing that they outperform other compositional distributional models present in the literature. The third contribution is to show how using category theory to solve linguistic problems forms a sound basis for research, illustrated by examples of work on this topic, that also suggest directions for future research.
In many machine learning scenarios, supervision by gold labels is not available and consequently neural models cannot be trained directly by maximum likelihood estimation (MLE). In a weak supervision scenario, metric-augmented objectives can be emplo yed to assign feedback to model outputs, which can be used to extract a supervision signal for training. We present several objectives for two separate weakly supervised tasks, machine translation and semantic parsing. We show that objectives should actively discourage negative outputs in addition to promoting a surrogate gold structure. This notion of bipolarity is naturally present in ramp loss objectives, which we adapt to neural models. We show that bipolar ramp loss objectives outperform other non-bipolar ramp loss objectives and minimum risk training (MRT) on both weakly supervised tasks, as well as on a supervised machine translation task. Additionally, we introduce a novel token-level ramp loss objective, which is able to outperform even the best sequence-level ramp loss on both weakly supervised tasks.
Although neural machine translation (NMT) has advanced the state-of-the-art on various language pairs, the interpretability of NMT remains unsatisfactory. In this work, we propose to address this gap by focusing on understanding the input-output beha vior of NMT models. Specifically, we measure the word importance by attributing the NMT output to every input word through a gradient-based method. We validate the approach on a couple of perturbation operations, language pairs, and model architectures, demonstrating its superiority on identifying input words with higher influence on translation performance. Encouragingly, the calculated importance can serve as indicators of input words that are under-translated by NMT models. Furthermore, our analysis reveals that words of certain syntactic categories have higher importance while the categories vary across language pairs, which can inspire better design principles of NMT architectures for multi-lingual translation.
We address the problem of speech act recognition (SAR) in asynchronous conversations (forums, emails). Unlike synchronous conversations (e.g., meetings, phone), asynchronous domains lack large labeled datasets to train an effective SAR model. In this paper, we propose methods to effectively leverage abundant unlabeled conversational data and the available labeled data from synchronous domains. We carry out our research in three main steps. First, we introduce a neural architecture based on hierarchical LSTMs and conditional random fields (CRF) for SAR, and show that our method outperforms existing methods when trained on in-domain data only. Second, we improve our initial SAR models by semi-supervised learning in the form of pretrained word embeddings learned from a large unlabeled conversational corpus. Finally, we employ adversarial training to improve the results further by leveraging the labeled data from synchronous domains and by explicitly modeling the distributional shift in two domains.
Sequence-to-sequence models are a powerful workhorse of NLP. Most variants employ a softmax transformation in both their attention mechanism and output layer, leading to dense alignments and strictly positive output probabilities. This density is was teful, making models less interpretable and assigning probability mass to many implausible outputs. In this paper, we propose sparse sequence-to-sequence models, rooted in a new family of $alpha$-entmax transformations, which includes softmax and sparsemax as particular cases, and is sparse for any $alpha > 1$. We provide fast algorithms to evaluate these transformations and their gradients, which scale well for large vocabulary sizes. Our models are able to produce sparse alignments and to assign nonzero probability to a short list of plausible outputs, sometimes rendering beam search exact. Experiments on morphological inflection and machine translation reveal consistent gains over dense models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا