ﻻ يوجد ملخص باللغة العربية
We revisit the Lieb-Liniger model for $n$ bosons in one dimension with attractive delta interaction in a half-space $mathbb{R}^+$ with diagonal boundary conditions. This model is integrable for arbitrary value of $b in mathbb{R}$, the interaction parameter with the boundary. We show that its spectrum exhibits a sequence of transitions, as $b$ is decreased from the hard-wall case $b=+infty$, with successive appearance of boundary bound states (or boundary modes) which we fully characterize. We apply these results to study the Kardar-Parisi-Zhang equation for the growth of a one-dimensional interface of height $h(x,t)$, on the half-space with boundary condition $partial_x h(x,t)|_{x=0}=b$ and droplet initial condition at the wall. We obtain explicit expressions, valid at all time $t$ and arbitrary $b$, for the integer exponential (one-point) moments of the KPZ height field $bar{e^{n h(0,t)}}$. From these moments we extract the large time limit of the probability distribution function (PDF) of the scaled KPZ height function. It exhibits a phase transition, related to the unbinding to the wall of the equivalent directed polymer problem, with two phases: (i) unbound for $b>-frac{1}{2}$ where the PDF is given by the GSE Tracy-Widom distribution (ii) bound for $b<-frac{1}{2}$, where the PDF is a Gaussian. At the critical point $b=-frac{1}{2}$, the PDF is given by the GOE Tracy-Widom distribution.
We study the out-of-equilibrium properties of a classical integrable non-relativistic theory, with a time evolution initially prepared with a finite energy density in the thermodynamic limit. The theory considered here is the Non-Linear Schrodinger e
Supercritical fluids play a significant role in elucidating fundamental aspects of liquid matter under extreme conditions. They have been extensively studied at pressures and temperatures relevant to various industrial applications. However, much les
In this paper we provide a detailed description of the eigenvalue $ E_{D}(x_0)leq 0$ (respectively $ E_{N}(x_0)leq 0$) of the self-adjoint Hamiltonian operator representing the negative Laplacian on the positive half-line with a Dirichlet (resp. Neum
The present paper considers some classical ferromagnetic lattice--gas models, consisting of particles that carry $n$--component spins ($n=2,3$) and associated with a $D$--dimensional lattice ($D=2,3$); each site can host one particle at most, thus im
A two-dimensional lattice gas model is proposed. The ground state of this model with a fixed density is neither periodic nor quasi-periodic. It also depends on system size in an irregular manner. On the other hand, it is ordered in the sense that the