ﻻ يوجد ملخص باللغة العربية
A two-dimensional lattice gas model is proposed. The ground state of this model with a fixed density is neither periodic nor quasi-periodic. It also depends on system size in an irregular manner. On the other hand, it is ordered in the sense that the entropy density is zero in the thermodynamic limit. The existence of a thermodynamic transition associated with such irregularly ordered ground states is conjectured from a duality relation for a thermodynamic function. This conjecture is supported by a phenomenological argument and numerical experiments.
The stationary critical properties of the isotropic majority vote model on random lattices with quenched connectivity disorder are calculated by using Monte Carlo simulations and finite size analysis. The critical exponents $gamma$ and $beta$ are fou
We investigate the ground state of the irrationally frustrated Josephson junction array with controlling anisotropy parameter lambda that is the ratio of the longitudinal Josephson coupling to the transverse one. We find that the ground state has one
The present paper considers some classical ferromagnetic lattice--gas models, consisting of particles that carry $n$--component spins ($n=2,3$) and associated with a $D$--dimensional lattice ($D=2,3$); each site can host one particle at most, thus im
The spin-1/2 Heisenberg model on the pyrochlore lattice is an iconic frustrated three-dimensional spin system with a rich phase diagram. Besides hosting several ordered phases, the model is debated to possess a spin-liquid ground state when only near
We compare accuracy of two prime time evolution algorithms involving Matrix Product States - tDMRG (time-dependent density matrix renormalization group) and TDVP (time-dependent variational principle). The latter is supposed to be superior within a l