ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle Telescope aboard FORESAIL-1: simulated performance

255   0   0.0 ( 0 )
 نشر من قبل Philipp Oleynik
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Philipp Oleynik




اسأل ChatGPT حول البحث

The Particle Telescope (PATE) of FORESAIL-1 mission is described. FORESAIL-1 is a CubeSat mission to polar Low Earth Orbit. Its scientific objectives are to characterize electron precipitation from the radiation belts and to observe energetic neutral atoms (ENAs) originating from the Sun during the strongest solar flares. For that purpose, the 3-unit CubeSat carries a particle telescope that measures energetic electrons in the nominal energy range of 80--800 keV in seven energy channels and energetic protons at 0.3--10 MeV in ten channels. In addition, particles penetrating the whole telescope at higher energies will be measured in three channels: one $>$800 keV electron channel, two integral proton channels at $>$10 MeV energies. The instrument contains two telescopes at right angles to each other, one measuring along the spin axis of the spacecraft and one perpendicular to it. During a spin period (nominally 15 s), the rotating telescope will, thus, deliver angular distributions of protons and electrons, at 11.25-degree clock-angle resolution, which enables one to accurately determine the pitch-angle distribution and separate the trapped and precipitating particles. During the last part of the mission, the rotation axis will be accurately pointed toward the Sun, enabling the measurement of the energetic hydrogen from that direction. Using the geomagnetic field as a filter and comparing the rates observed by the two telescopes, the instrument can observe the solar ENA flux for events similar to the only one so far observed in December 2006. We present the Geant4-simulated energy and angular response functions of the telescope and assess its sensitivity showing that they are adequate to address the scientific objectives of the mission.



قيم البحث

اقرأ أيضاً

UVscope is an instrument, based on a multi-pixel photon detector, developed to support experimental activities for high-energy astrophysics and cosmic ray research. The instrument, working in single photon counting mode, is designed to directly measu re light flux in the wavelengths range 300-650~nm. The instrument can be used in a wide field of applications where the knowledge of the nocturnal environmental luminosity is required. Currently, one UVscope instrument is allocated onto the external structure of the ASTRI-Horn Cherenkov telescope devoted to the gamma-ray astronomy at very high energies. Being co-aligned with the ASTRI-Horn camera axis, UVscope can measure the diffuse emission of the night sky background simultaneously with the ASTRI-Horn camera, without any interference with the main telescope data taking procedures. UVscope is properly calibrated and it is used as an independent reference instrument for test and diagnostic of the novel ASTRI-Horn telescope.
On-orbit performance of the Solar Optical Telescope (SOT) aboard Hinode is described with some attentions on its unpredicted aspects. In general, SOT revealed an excellent performance and has been providing outstanding data. Some unexpected features exist, however, in behaviors of the focus position, throughput and structural stability. Most of them are recovered by the daily operation i.e., frequent focus adjustment, careful heater setting and corrections in data analysis. The tunable filter contains air bubbles which degrade the data quality significantly. Schemes for tuning the filter without disturbing the bubbles have been developed and tested, and some useful procedures to obtain Dopplergram and magnetogram are now available. October and March when the orbit of satellite becomes nearly perpendicular to the direction towards the sun provide a favorable condition for continuous runs of the narrow-band filter imager.
Fast timing capability in X-ray observation of astrophysical objects is one of the key properties for the ASTRO-H (Hitomi) mission. Absolute timing accuracies of 350 micro second or 35 micro second are required to achieve nominal scientific goals or to study fast variabilities of specific sources. The satellite carries a GPS receiver to obtain accurate time information, which is distributed from the central onboard computer through the large and complex SpaceWire network. The details on the time system on the hardware and software design are described. In the distribution of the time information, the propagation delays and jitters affect the timing accuracy. Six other items identified within the timing system will also contribute to absolute time error. These error items have been measured and checked on ground to ensure the time error budgets meet the mission requirements. The overall timing performance in combination with hardware performance, software algorithm, and the orbital determination accuracies, etc, under nominal conditions satisfies the mission requirements of 35 micro second. This work demonstrates key points for space-use instruments in hardware and software designs and calibration measurements for fine timing accuracy on the order of microseconds for mid-sized satellites using the SpaceWire (IEEE1355) network.
One of the most useful techniques in astronomical instrumentation is image slicing. It enables a spectrograph to have a more compact angular slit, whilst retaining throughput and increasing resolving power. Astrophotonic components like the photonic lanterns and photonic reformatters can be used to replace bulk optics used so far. This study investigates the performance of such devices using end-to-end simulations to approximate realistic on-sky conditions. It investigates existing components, tries to optimize their performance and aims to understand better how best to design instruments to maximize their performance. This work complements the recent work in the field and provides an estimation for the performance of the new components.
We describe the in-orbit performance of the soft X-ray imaging system consisting of the Soft X-ray Telescope and the Soft X-ray Imager aboard Hitomi. Verification and calibration of imaging and spectroscopic performance are carried out making the bes t use of the limited data of less than three weeks. Basic performance including a large field of view of 38x38 is verified with the first light image of the Perseus cluster of galaxies. Amongst the small number of observed targets, the on-minus-off pulse image for the out-of-time events of the Crab pulsar enables us to measure a half power diameter of the telescope as about 1.3. The average energy resolution measured with the onboard calibration source events at 5.89 keV is 179 pm 3 eV in full width at half maximum. Light leak and cross talk issues affected the effective exposure time and the effective area, respectively, because all the observations were performed before optimizing an observation schedule and parameters for the dark level calculation. Screening the data affected by these two issues, we measure the background level to be 5.6x10^{-6} counts s^{-1} arcmin^{-2} cm^{-2} in the energy band of 5-12 keV, which is seven times lower than that of the Suzaku XIS-BI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا