ترغب بنشر مسار تعليمي؟ اضغط هنا

Time Assignment System and Its Performance aboard the Hitomi Satellite

91   0   0.0 ( 0 )
 نشر من قبل Yukikatsu Terada
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yukikatsu Terada




اسأل ChatGPT حول البحث

Fast timing capability in X-ray observation of astrophysical objects is one of the key properties for the ASTRO-H (Hitomi) mission. Absolute timing accuracies of 350 micro second or 35 micro second are required to achieve nominal scientific goals or to study fast variabilities of specific sources. The satellite carries a GPS receiver to obtain accurate time information, which is distributed from the central onboard computer through the large and complex SpaceWire network. The details on the time system on the hardware and software design are described. In the distribution of the time information, the propagation delays and jitters affect the timing accuracy. Six other items identified within the timing system will also contribute to absolute time error. These error items have been measured and checked on ground to ensure the time error budgets meet the mission requirements. The overall timing performance in combination with hardware performance, software algorithm, and the orbital determination accuracies, etc, under nominal conditions satisfies the mission requirements of 35 micro second. This work demonstrates key points for space-use instruments in hardware and software designs and calibration measurements for fine timing accuracy on the order of microseconds for mid-sized satellites using the SpaceWire (IEEE1355) network.

قيم البحث

اقرأ أيضاً

We describe the in-orbit performance of the soft X-ray imaging system consisting of the Soft X-ray Telescope and the Soft X-ray Imager aboard Hitomi. Verification and calibration of imaging and spectroscopic performance are carried out making the bes t use of the limited data of less than three weeks. Basic performance including a large field of view of 38x38 is verified with the first light image of the Perseus cluster of galaxies. Amongst the small number of observed targets, the on-minus-off pulse image for the out-of-time events of the Crab pulsar enables us to measure a half power diameter of the telescope as about 1.3. The average energy resolution measured with the onboard calibration source events at 5.89 keV is 179 pm 3 eV in full width at half maximum. Light leak and cross talk issues affected the effective exposure time and the effective area, respectively, because all the observations were performed before optimizing an observation schedule and parameters for the dark level calculation. Screening the data affected by these two issues, we measure the background level to be 5.6x10^{-6} counts s^{-1} arcmin^{-2} cm^{-2} in the energy band of 5-12 keV, which is seven times lower than that of the Suzaku XIS-BI.
The Soft X-ray Imager (SXI) is an imaging spectrometer using charge-coupled devices (CCDs) aboard the Hitomi X-ray observatory. The SXI sensor has four CCDs with an imaging area size of $31~{rm mm} times 31~{rm mm}$ arranged in a $2 times 2$ array. C ombined with the X-ray mirror, the Soft X-ray Telescope, the SXI detects X-rays between $0.4~{rm keV}$ and $12~{rm keV}$ and covers a $38^{prime} times 38^{prime}$ field-of-view. The CCDs are P-channel fully-depleted, back-illumination type with a depletion layer thickness of $200~mu{rm m}$. Low operation temperature down to $-120~^circ{rm C}$ as well as charge injection is employed to reduce the charge transfer inefficiency of the CCDs. The functionality and performance of the SXI are verified in on-ground tests. The energy resolution measured is $161$-$170~{rm eV}$ in full width at half maximum for $5.9~{rm keV}$ X-rays. In the tests, we found that the CTI of some regions are significantly higher. A method is developed to properly treat the position-dependent CTI. Another problem we found is pinholes in the Al coating on the incident surface of the CCDs for optical light blocking. The Al thickness of the contamination blocking filter is increased in order to sufficiently block optical light.
Hitomi (ASTRO-H) carries two Hard X-ray Telescopes (HXTs) that can focus X-rays up to 80 keV. Combined with the Hard X-ray Imagers (HXIs) that detect the focused X-rays, imaging spectroscopy in the high-energy band from 5 keV to 80 keV is made possib le. We studied characteristics of HXTs after the launch such as the encircled energy function (EEF) and the effective area using the data of a Crab observation. The half power diameters (HPDs) in the 5--80 keV band evaluated from the EEFs are 1.59 arcmin for HXT-1 and 1.65 arcmin for HXT-2. Those are consistent with the HPDs measured with ground experiments when uncertainties are taken into account. We can conclude that there is no significant change in the characteristics of the HXTs before and after the launch. The off-axis angle of the aim point from the optical axis is evaluated to be less than 0.5 arcmin for both HXT-1 and HXT-2. The best-fit parameters for the Crab spectrum obtained with the HXT-HXI system are consistent with the canonical values.
Gamma-ray polarization offers a unique probes into the geometry of the gamma-ray emission process in celestial objects. The Soft Gamma-ray Detector (SGD) onboard the X-ray observatory Hitomi is a Si/CdTe Compton camera and is expected to be an excell ent polarimeter, as well as a highly sensitive spectrometer due to its good angular coverage and resolution for Compton scattering. A beam test of the final-prototype for the SGD Compton camera was conducted to demonstrate its polarimetric capability and to verify and calibrate the Monte Carlo simulation of the instrument. The modulation factor of the SGD prototype camera, evaluated for the inner and outer parts of the CdTe sensors as absorbers, was measured to be 0.649--0.701 (inner part) and 0.637--0.653 (outer part) at 122.2 keV and 0.610--0.651 (inner part) and 0.564--0.592 (outer part) at 194.5 keV at varying polarization angles with respect to the detector. This indicates that the relative systematic uncertainty of the modulation factor is as small as ~3%.
UVscope is an instrument, based on a multi-pixel photon detector, developed to support experimental activities for high-energy astrophysics and cosmic ray research. The instrument, working in single photon counting mode, is designed to directly measu re light flux in the wavelengths range 300-650~nm. The instrument can be used in a wide field of applications where the knowledge of the nocturnal environmental luminosity is required. Currently, one UVscope instrument is allocated onto the external structure of the ASTRI-Horn Cherenkov telescope devoted to the gamma-ray astronomy at very high energies. Being co-aligned with the ASTRI-Horn camera axis, UVscope can measure the diffuse emission of the night sky background simultaneously with the ASTRI-Horn camera, without any interference with the main telescope data taking procedures. UVscope is properly calibrated and it is used as an independent reference instrument for test and diagnostic of the novel ASTRI-Horn telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا