ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of coupled solitary wave in biomembranes and nerves

115   0   0.0 ( 0 )
 نشر من قبل Francois M. Moukam Kakmeni
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we consider the electromechanical density pulse as a coupled solitary waves represented by a longitudinal compression wave and an out-of-plane transversal wave (i.e., perpendicular to the membrane surface). We analyzed using, the variational approach, the characteristics of the coupled solitary waves in the presence of damping within the framework of coupled nonlinear Burger-Korteweg-de Vries-Benjamin-Bona-Mahony (BKdV-BBM) equation. It is shown that, the inertia parameter increases the stability of coupled solitary waves while the damping parameter decreases it. Moreover, the presence of damping term induces a discontinuity of stable regions in the inertia-speed parameter space, appearing in he form of an island of points. Bell shape and solitary-shock like wave profiles were obtained by varying the propagation speed and their linear stability spectrum computed. It is shown that bell shape solitary wave exhibit bound state eigenvalue spectrum, therefore stable. On the other hand, the solitary-shock like wave profiles exhibit unbound state eigenvalue spectrum and are therefore generally unstable.



قيم البحث

اقرأ أيضاً

In this work, we propose and study the stability of nerve impulse propagation as electrical and mechanical signals through linear approximation. We present a potential energy stored in the biomembrane due to the deformation, bending, and stretching a s the action potential propagates in the nerve fibre. From the potential energy, we derive electromechanical coupling forces and an attempt is made to unify the two models to account for both the electrical and mechanical activities of nerve signal propagation by introducing the electromechanical coupling forces. We examine the stability of the equilibrium states of the electromechanical model for nerves through the Routh Hurwitz stability criteria. Finally, we present results of the numerical simulations of the electromechanical model for nerves through Runge Kutta method of order four.
We consider the interplay between nonlocal nonlinearity and randomness for two different nonlinear Schrodinger models. We show that stability of bright solitons in presence of random perturbations increases dramatically with the nonlocality-induced f inite correlation length of the noise in the transverse plane, by means of both numerical simulations and analytical estimates. In fact, solitons are practically insensitive to noise when the correlation length of the noise becomes comparable to the extent of the wave packet. We characterize soliton stability using two different criteria based on the evolution of the Hamiltonian of the soliton and its power. The first criterion allows us to estimate a time (or distance) over which the soliton preserves its form. The second criterion gives the life-time of the solitary wave packet in terms of its radiative power losses. We derive a simplified mean field approach which allows us to calculate the power loss analytically in the physically relevant case of weakly correlated noise, which in turn serves as a lower estimate of the life-time for correlated noise in general case.
251 - Hongqiu Chen , Xiaojun Wang 2015
In this work, we present a stability criteria for the solitary wave solutions to a BBM system that contains coupled nonlinear terms. Using the idea by Bona, Chen and Karakashian and exploiting the accurate point spectrum information of the associated Schrodinger operator, we improve the stability results previously got by Pereira.
The stability and dynamical properties of the so-called resonant nonlinear Schrodinger (RNLS) equation, are considered. The RNLS is a variant of the nonlinear Schrodinger (NLS) equation with the addition of a perturbation used to describe wave propag ation in cold collisionless plasmas. We first examine the modulational stability of plane waves in the RNLS model, identifying the modifications of the associated conditions from the NLS case. We then move to the study of solitary waves with vanishing and nonzero boundary conditions. Interestingly the RNLS, much like the usual NLS, exhibits both dark and bright soliton solutions depending on the relative signs of dispersion and nonlinearity. The corresponding existence, stability and dynamics of these solutions are studied systematically in this work.
We study asymptotic stability of solitary wave solutions in the one-dimensional Benney-Luke equation, a formally valid approximation for describing two-way water wave propagation. For this equation, as for the full water wave problem, the classic var iational method for proving orbital stability of solitary waves fails dramatically due to the fact that the second variation of the energy-momentum functional is infinitely indefinite. We establish nonlinear stability in energy norm under the spectral stability hypothesis that the linearization admits no non-zero eigenvalues of non-negative real part. We also verify this hypothesis for waves of small energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا