ﻻ يوجد ملخص باللغة العربية
In this work, we present a stability criteria for the solitary wave solutions to a BBM system that contains coupled nonlinear terms. Using the idea by Bona, Chen and Karakashian and exploiting the accurate point spectrum information of the associated Schrodinger operator, we improve the stability results previously got by Pereira.
In this work, we consider the electromechanical density pulse as a coupled solitary waves represented by a longitudinal compression wave and an out-of-plane transversal wave (i.e., perpendicular to the membrane surface). We analyzed using, the variat
The well-posedness for the supersonic solutions of the Euler-Poisson system for hydrodynamical model in semiconductor devices and plasmas is studied in this paper. We first reformulate the Euler-Poisson system in the supersonic region into a second o
We study the long-time behavior an extended Navier-Stokes system in $R^2$ where the incompressibility constraint is relaxed. This is one of several reduced models of Grubb and Solonnikov 89 and was revisited recently (Liu, Liu, Pego 07) in bounded do
We study bifurcations and spectral stability of solitary waves in coupled nonlinear Schrodinger equations (CNLS) on the line. We assume that the coupled equations possess a solution of which one component is identically zero, and call it a $textit{fu
We consider a system of two coupled non-linear Klein-Gordon equations. We show the existence of standing waves solutions and the existence of a Lyapunov function for the ground state.