ﻻ يوجد ملخص باللغة العربية
This work concerns the dynamical two-point spin correlation functions of the transverse Ising quantum chain at finite (non-zero) temperature, in the universal region near the quantum critical point. They are correlation functions of twist fields in the massive Majorana fermion quantum field theory. At finite temperature, these are known to satisfy a set of integrable partial differential equations, including the sinh-Gordon equation. We apply the classical inverse scattering method to study them, finding that the ``initial scattering data corresponding to the correlation functions are simply related to the one-particle finite-temperature form factors calculated recently by one of the authors. The set of linear integral equations (Gelfand-Levitan-Marchenko equations) associated to the inverse scattering problem then gives, in principle, the two-point functions at all space and time separations, and all temperatures. From them, we evaluate the large-time asymptotic expansion ``near the light cone, in the region where the difference between the space and time separations is of the order of the correlation length.
A new nonlinear integral equation (NLIE) describing the thermodynamics of the Heisenberg spin chain is derived based on the t-W relation of the quantum transfer matrices. The free energy of the system in a magnetic field is thus obtained by solving t
We introduce a formalism for time-dependent correlation functions for systems whose evolutions are governed by non-Hermitian Hamiltonians of general type. It turns out that one can define two different types of time correlation functions. Both these
This paper deals with $tilde{chi}^{(6)}$, the six-particle contribution to the magnetic susceptibility of the square lattice Ising model. We have generated, modulo a prime, series coefficients for $tilde{chi}^{(6)}$. The length of the series is suffi
We compute analytically and in closed form the four-point correlation function in the plane, and the two-point correlation function in the upper half-plane, of layering vertex operators in the two dimensional conformally invariant system known as the
We evaluate the non-Markovian finite-temperature two-time correlation functions (CFs) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evo