ﻻ يوجد ملخص باللغة العربية
Advanced detector R&D requires performing computationally intensive and detailed simulations as part of the detector-design optimization process. We propose a general approach to this process based on Bayesian optimization and machine learning that encodes detector requirements. As a case study, we focus on the design of the dual-radiator Ring Imaging Cherenkov (dRICH) detector under development as part of the particle-identification system at the future Electron-Ion Collider (EIC). The EIC is a US-led frontier accelerator project for nuclear physics, which has been proposed to further explore the structure and interactions of nuclear matter at the scale of sea quarks and gluons. We show that the detector design obtained with our automated and highly parallelized framework outperforms the baseline dRICH design within the assumptions of the current model. Our approach can be applied to any detector R&D, provided that realistic simulations are available.
Particle IDentification (PID) is a central requirement of the experiments at the future EIC. Hadron PID at high momenta by RICH techniques requires the use of low density gaseous radiators, where the challenge is the limited length of the radiator re
This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United Sta
We report the status of R&D on large triple-GEM detectors for a forward tracker (FT) in an experiment at a future Electron Ion Collider (EIC) that will improve our understanding of QCD. We have designed a detector prototype specifically targeted for
We present ion backflow measurements in a Micromegas (MICRO-MEsh GASeous detector) TPC device developed for the next high energy electron-positron linear collider under study and a simple explanation for this backflow. A Micromegas micro-mesh has the
The use of a nonhomogeneous aerogel radiator, i.e. one consisting of layers with different refractive indices, has been shown to improve the resolution of the Cherenkov angle measured with a proximity focusing RICH detector. In order to obtain furthe