ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Expansion, Age, and Origin of the Puzzling Shell/Pulsar Wind Nebula G310.6-1.6

178   0   0.0 ( 0 )
 نشر من قبل Stephen Reynolds
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a 142-ks Chandra observation of the enigmatic combination supernova remnant G310.6-1.6 consisting of a bright pulsar-wind nebula driven by an energetic pulsar, surrounded by a highly circular, very faint shell with a featureless, probably synchrotron, spectrum. Comparison with an observation 6 years earlier shows no measurable expansion of the shell, though some features in the pulsar-wind nebula have moved. We find an expansion age of at least 2500 yr, implying a current shock velocity less than about 1000 km/s. We place severe upper limits on thermal emission from the shell; if the shell locates the blast wave, a Sedov interpretation would require the remnant to be very young, about 1000 yr, and to have resulted from a dramatically sub-energetic supernova, ejecting << 0.02 M_sun with energy E < 3 x 10^47 erg. Even a merger-induced collapse of a white dwarf to a neutron star, with a low-energy explosion, is unlikely to produce such an event. Other explanations seem equally unlikely.



قيم البحث

اقرأ أيضاً

We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures - two $approx 0.2 d_{250}$ pc long lateral tails and a segmented axial tail of $approx 0.05 d_{250}$ pc length, where $d_{250}=d/(250 {rm pc})$. The photon indices of the power law spectra of the lateral tails, $Gamma approx 1$, are significantly harder than those of the pulsar ($Gamma approx 1.5$) and the axial tail ($Gamma approx 1.6$). There is no significant diffuse X-ray emission between the lateral tails -- the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indication of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scenario, the lateral tails could represent an azimuthally asymmetric shell whose hard emission is caused by the Fermi acceleration mechanism of colliding winds. In another scenario, the lateral tails could be luminous, bent polar outflows, while the blobs in the axial tail could represent a crushed torus. In a resemblance to planetary magnetotails, the blobs of the axial tail might also represent short-lived plasmoids which are formed by magnetic field reconnection in the relativistic plasma of the pulsar wind tail.
137 - Chulhoon Chang 2011
We observed the young pulsar J1357--6429 with the {it Chandra} and {it XMM-Newton} observatories. The pulsar spectrum fits well a combination of absorbed power-law model ($Gamma=1.7pm0.6$) and blackbody model ($kT=140^{+60}_{-40}$ eV, $Rsim2$ km at t he distance of 2.5 kpc). Strong pulsations with pulsed fraction of $42%pm5%$, apparently associated with the thermal component, were detected in 0.3--1.1 keV. Surprisingly, pulsed fraction at higher energies, 1.1--10 keV, appears to be smaller, $23%pm4%$. The small emitting area of the thermal component either corresponds to a hotter fraction of the neutron star (NS) surface or indicates inapplicability of the simplistic blackbody description. The X-ray images also reveal a pulsar-wind nebula (PWN) with complex, asymmetric morphology comprised of a brighter, compact PWN surrounded by the fainter, much more extended PWN whose spectral slopes are $Gamma=1.3pm0.3$ and $Gamma=1.7pm0.2$, respectively. The extended PWN with the observed flux of $sim7.5times10^{-13}$ erg s$^{-1}$ cm$^{-2}$ is a factor of 10 more luminous then the compact PWN. The pulsar and its PWN are located close to the center of the extended TeV source HESS J1356--645, which strongly suggests that the VHE emission is powered by electrons injected by the pulsar long ago. The X-ray to TeV flux ratio, $sim0.1$, is similar to those of other relic PWNe. We found no other viable candidates to power the TeV source. A region of diffuse radio emission, offset from the pulsar toward the center of the TeV source, could be synchrotron emission from the same relic PWN rather than from the supernova remnant.
We report new Chandra X-ray observations of the shell supernova remnant (SNR) Kes 75 (G29.7-0.3) containing a pulsar and pulsar-wind nebula (PWN). Expansion of the PWN is apparent across the four epochs, 2000, 2006, 2009, and 2016. We find an expansi on rate between 2000 and 2016 of the NW edge of the PWN of 0.249% +/- 0.023% yr^{-1}, for an expansion age R/(dR/dt) of 400 +/- 40 years and an expansion velocity of about 1000 km s^{-1}. We suggest that the PWN is expanding into an asymmetric nickel bubble in a conventional Type IIP supernova. Some acceleration of the PWN expansion is likely, giving a true age of 480 +/- 50 years. The pulsars birth luminosity was larger than the current value by a factor of 3 -- 8, while the initial period was within a factor of 2 of its current value. We confirm directly that Kes 75 contains the youngest known PWN, and hence youngest known pulsar. The pulsar PSR J1846-0258 has a spindown-inferred magnetic field of 5 x 10^{13} G; in 2006 it emitted five magnetar-like short X-ray bursts, but its spindown luminosity has not changed significantly. However, the flux of the PWN has decreased by about 10% between 2009 and 2016, almost entirely in the northern half. A bright knot has declined by 30% since 2006. During this time, the photon indices of the power-law models did not change. This flux change is too rapid to be due to normal PWN evolution in one-zone models.
PSR J1809-1917 is a young ($tau=51$ kyr) energetic ($dot{E}=1.8times10^{36}$ erg s$^{-1}$) radio pulsar powering a pulsar wind nebula (PWN). We report on the results of three Chandra X-ray Observatory observations which show that the PWN consists of a small ($sim 20$) bright compact nebula (CN) and faint extended emission seen up to $2$ from the pulsar. The CN is elongated in the northeast-southwest direction and exhibits morphological and flux variability on a timescale of a few months. We also find evidence of small arcsecond-scale jets extending from the pulsar along the same direction, and exhibiting a hard power-law (PL) spectrum with photon index $Gamma_{rm jet}=1.2pm0.1$. The more extended emission and CN share the same symmetry axis, which is also aligned with the direction toward the TeV $gamma$-ray source HESS J1809--193, supporting their association. The spectrum of the extended nebula (EN) fits an absorbed PL with about the same slope as that of the CN, $Gamma_{rm CN}approxGamma_{rm EN}=1.55pm0.09$; no spectral changes across the ENs 2 pc extent are seen. The total PWN 0.5-8 keV luminosity is $L_{rm PWN}approx 9times10^{32}$ erg s$^{-1}$, about half of which is due to the EN.
The pulsar emission mechanism in the gamma-ray energy band is poorly understood. Currently, there are several models under discussion in the pulsar community. These models can be constrained by studying the collective properties of a sample of pulsar s, which became possible with the large sample of gamma-ray pulsars discovered by the Fermi Large Area Telescope (Fermi-LAT). In this paper we develop a new experimental multi-wavelength technique to determine the beaming factor $left( f_Omega right)$ dependance on spin-down luminosity of a set of GeV pulsars. This technique requires three input parameters: pulsar spin-down luminosity, pulsar phase-averaged GeV flux and TeV or X-ray flux from the associated Pulsar Wind Nebula (PWN). The analysis presented in this paper uses the PWN TeV flux measurements to study the correlation between $f_Omega$ and $dot{E}$. The measured correlation has some features that favor the Outer Gap model over the Polar Cap, Slot Gap and One Pole Caustic models for pulsar emission in the energy range of 0.1 to 100 GeV, but one must keep in mind that these simulated models failed to explain many of the most important pulsar population characteristics. A tight correlation between the pulsar GeV emission and PWN TeV emission was also observed, which suggests the possibility of a linear relationship between the two emission mechanisms. In this paper we also discuss a possible mechanism to explain this correlation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا