ﻻ يوجد ملخص باللغة العربية
There are theoretical frameworks, such as the large extra dimension models, which predict the strengthening of the gravitational field in short distances. Here we obtain new empiric constraints for deviations of standard gravity in the atomic length scale from analyses of recent and accurate data of hydrogen spectroscopy. The new bounds, extracted from 1S-3S transition, are compared with previous limits given by antiprotonic Helium spectroscopy. Independent constraints are also determined by investigating the effects of gravitational spin-orbit coupling on the atomic spectrum. We show that the analysis of the influence of that interaction, which is responsible for the spin precession phenomena, on the fine structure of the states can be employed as a test of a post-Newtonian potential in the atomic domain. The constraints obtained here from 2P_{1/2}-2P_{3/2} transition in hydrogen are tighter than previous bounds determined from measurements of the spin precession in an electron-nucleus scattering.
This is an extended summary of the two parallel sessions held at MG11: PPN1 ``Strong Gravity and Binaries (chaired by L.B. and L.G.) and PPN2 ``Post-Newtonian Dynamics in Binary Objects (chaired by G.S.). The aims and contents of these sessions were
General relativity is a fully conservative theory, but there exist other possible metric theories of gravity. We consider non-conservative ones with a parameterized post-Newtonian (PPN) parameter, $zeta_2$. A non-zero $zeta_2$ induces a self-accelera
We determine the gravitational interaction between two compact bodies up to the sixth power in Newtons constant GN, in the static limit. This result is achieved within the effective field theory approach to General Relativity, and exploits a manifest
We report an experimental test of non-Newtonian gravitational forces at mi- crometer range. To experimentally subtract off the Casimir force and the electrostatic force background, differential force measurements were performed by sensing the lateral
We use the effective field theory for gravitational bound states, proposed by Goldberger and Rothstein, to compute the interaction Lagrangian of a binary system at the second Post-Newtonian order. Throughout the calculation, we use a metric parametri