ترغب بنشر مسار تعليمي؟ اضغط هنا

A Distributed Online Convex Optimization Algorithm with Improved Dynamic Regret

71   0   0.0 ( 0 )
 نشر من قبل Yan Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the problem of distributed online convex optimization, where a network of local agents aim to jointly optimize a convex function over a period of multiple time steps. The agents do not have any information about the future. Existing algorithms have established dynamic regret bounds that have explicit dependence on the number of time steps. In this work, we show that we can remove this dependence assuming that the local objective functions are strongly convex. More precisely, we propose a gradient tracking algorithm where agents jointly communicate and descend based on corrected gradient steps. We verify our theoretical results through numerical experiments.



قيم البحث

اقرأ أيضاً

In this paper, we consider the problem of distributed online convex optimization, where a group of agents collaborate to track the global minimizers of a sum of time-varying objective functions in an online manner. Specifically, we propose a novel di stributed online gradient descent algorithm that relies on an online adaptation of the gradient tracking technique used in static optimization. We show that the dynamic regret bound of this algorithm has no explicit dependence on the time horizon and, therefore, can be tighter than existing bounds especially for problems with long horizons. Our bound depends on a new regularity measure that quantifies the total change in the gradients at the optimal points at each time instant. Furthermore, when the optimizer is approximatly subject to linear dynamics, we show that the dynamic regret bound can be further tightened by replacing the regularity measure that captures the path length of the optimizer with the accumulated prediction errors, which can be much lower in this special case. We present numerical experiments to corroborate our theoretical results.
In this work, we consider a distributed online convex optimization problem, with time-varying (potentially adversarial) constraints. A set of nodes, jointly aim to minimize a global objective function, which is the sum of local convex functions. The objective and constraint functions are revealed locally to the nodes, at each time, after taking an action. Naturally, the constraints cannot be instantaneously satisfied. Therefore, we reformulate the problem to satisfy these constraints in the long term. To this end, we propose a distributed primal-dual mirror descent based approach, in which the primal and dual updates are carried out locally at all the nodes. This is followed by sharing and mixing of the primal variables by the local nodes via communication with the immediate neighbors. To quantify the performance of the proposed algorithm, we utilize the challenging, but more realistic metrics of dynamic regret and fit. Dynamic regret measures the cumulative loss incurred by the algorithm, compared to the best dynamic strategy. On the other hand, fit measures the long term cumulative constraint violations. Without assuming the restrictive Slaters conditions, we show that the proposed algorithm achieves sublinear regret and fit under mild, commonly used assumptions.
73 - Ran Xin , Usman A. Khan , 2020
In this paper, we study decentralized online stochastic non-convex optimization over a network of nodes. Integrating a technique called gradient tracking in decentralized stochastic gradient descent, we show that the resulting algorithm, GT-DSGD, enj oys certain desirable characteristics towards minimizing a sum of smooth non-convex functions. In particular, for general smooth non-convex functions, we establish non-asymptotic characterizations of GT-DSGD and derive the conditions under which it achieves network-independent performances that match the centralized minibatch SGD. In contrast, the existing results suggest that GT-DSGD is always network-dependent and is therefore strictly worse than the centralized minibatch SGD. When the global non-convex function additionally satisfies the Polyak-Lojasiewics (PL) condition, we establish the linear convergence of GT-DSGD up to a steady-state error with appropriate constant step-sizes. Moreover, under stochastic approximation step-sizes, we establish, for the first time, the optimal global sublinear convergence rate on almost every sample path, in addition to the asymptotically optimal sublinear rate in expectation. Since strongly convex functions are a special case of the functions satisfying the PL condition, our results are not only immediately applicable but also improve the currently known best convergence rates and their dependence on problem parameters.
This paper addresses the estimation of a time- varying parameter in a network. A group of agents sequentially receive noisy signals about the parameter (or moving target), which does not follow any particular dynamics. The parameter is not observable to an individual agent, but it is globally identifiable for the whole network. Viewing the problem with an online optimization lens, we aim to provide the finite-time or non-asymptotic analysis of the problem. To this end, we use a notion of dynamic regret which suits the online, non-stationary nature of the problem. In our setting, dynamic regret can be recognized as a finite-time counterpart of stability in the mean- square sense. We develop a distributed, online algorithm for tracking the moving target. Defining the path-length as the consecutive differences between target locations, we express an upper bound on regret in terms of the path-length of the target and network errors. We further show the consistency of the result with static setting and noiseless observations.
We explore whether quantum advantages can be found for the zeroth-order online convex optimization problem, which is also known as bandit convex optimization with multi-point feedback. In this setting, given access to zeroth-order oracles (that is, t he loss function is accessed as a black box that returns the function value for any queried input), a player attempts to minimize a sequence of adversarially generated convex loss functions. This procedure can be described as a $T$ round iterative game between the player and the adversary. In this paper, we present quantum algorithms for the problem and show for the first time that potential quantum advantages are possible for problems of online convex optimization. Specifically, our contributions are as follows. (i) When the player is allowed to query zeroth-order oracles $O(1)$ times in each round as feedback, we give a quantum algorithm that achieves $O(sqrt{T})$ regret without additional dependence of the dimension $n$, which outperforms the already known optimal classical algorithm only achieving $O(sqrt{nT})$ regret. Note that the regret of our quantum algorithm has achieved the lower bound of classical first-order methods. (ii) We show that for strongly convex loss functions, the quantum algorithm can achieve $O(log T)$ regret with $O(1)$ queries as well, which means that the quantum algorithm can achieve the same regret bound as the classical algorithms in the full information setting.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا