ﻻ يوجد ملخص باللغة العربية
The darknet markets are notorious black markets in cyberspace, which involve selling or brokering drugs, weapons, stolen credit cards, and other illicit goods. To combat illicit transactions in the cyberspace, it is important to analyze the behaviors of participants in darknet markets. Currently, many studies focus on studying the behavior of vendors. However, there is no much work on analyzing buyers. The key challenge is that the buyers are anonymized in darknet markets. For most of the darknet markets, We only observe the first and last digits of a buyers ID, such as ``a**b. To tackle this challenge, we propose a hidden buyer identification model, called UNMIX, which can group the transactions from one hidden buyer into one cluster given a transaction sequence from an anonymized ID. UNMIX is able to model the temporal dynamics information as well as the product, comment, and vendor information associated with each transaction. As a result, the transactions with similar patterns in terms of time and content group together as the subsequence from one hidden buyer. Experiments on the data collected from three real-world darknet markets demonstrate the effectiveness of our approach measured by various clustering metrics. Case studies on real transaction sequences explicitly show that our approach can group transactions with similar patterns into the same clusters.
The textual content of a document and its publication date are intertwined. For example, the publication of a news article on a topic is influenced by previous publications on similar issues, according to underlying temporal dynamics. However, it can
Textual network embedding aims to learn low-dimensional representations of text-annotated nodes in a graph. Prior work in this area has typically focused on fixed graph structures; however, real-world networks are often dynamic. We address this chall
We consider the following general hidden hubs model: an $n times n$ random matrix $A$ with a subset $S$ of $k$ special rows (hubs): entries in rows outside $S$ are generated from the probability distribution $p_0 sim N(0,sigma_0^2)$; for each row in
We modify ETAS models by replacing the Pareto-like kernel proposed by Ogata with a Mittag-Leffler type kernel. Provided that the kernel decays as a power law with exponent $beta + 1 in (1,2]$, this replacement has the advantage that the Laplace trans
In the last decade, Hawkes processes have received a lot of attention as good models for functional connectivity in neural spiking networks. In this paper we consider a variant of this process, the Age Dependent Hawkes process, which incorporates ind