ترغب بنشر مسار تعليمي؟ اضغط هنا

Rate-Regularization and Generalization in VAEs

78   0   0.0 ( 0 )
 نشر من قبل Babak Esmaeili
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Variational autoencoders optimize an objective that combines a reconstruction loss (the distortion) and a KL term (the rate). The rate is an upper bound on the mutual information, which is often interpreted as a regularizer that controls the degree of compression. We here examine whether inclusion of the rate also acts as an inductive bias that improves generalization. We perform rate-distortion analyses that control the strength of the rate term, the network capacity, and the difficulty of the generalization problem. Decreasing the strength of the rate paradoxically improves generalization in most settings, and reducing the mutual information typically leads to underfitting. Moreover, we show that generalization continues to improve even after the mutual information saturates, indicating that the gap on the bound (i.e. the KL divergence relative to the inference marginal) affects generalization. This suggests that the standard Gaussian prior is not an inductive bias that typically aids generalization, prompting work to understand what choices of priors improve generalization in VAEs.

قيم البحث

اقرأ أيضاً

A crucial aspect in reliable machine learning is to design a deployable system in generalizing new related but unobserved environments. Domain generalization aims to alleviate such a prediction gap between the observed and unseen environments. Previo us approaches commonly incorporated learning invariant representation for achieving good empirical performance. In this paper, we reveal that merely learning invariant representation is vulnerable to the unseen environment. To this end, we derive novel theoretical analysis to control the unseen test environment error in the representation learning, which highlights the importance of controlling the smoothness of representation. In practice, our analysis further inspires an efficient regularization method to improve the robustness in domain generalization. Our regularization is orthogonal to and can be straightforwardly adopted in existing domain generalization algorithms for invariant representation learning. Empirical results show that our algorithm outperforms the ba
We present a principled approach to incorporating labels in VAEs that captures the rich characteristic information associated with those labels. While prior work has typically conflated these by learning latent variables that directly correspond to l abel values, we argue this is contrary to the intended effect of supervision in VAEs-capturing rich label characteristics with the latents. For example, we may want to capture the characteristics of a face that make it look young, rather than just the age of the person. To this end, we develop the CCVAE, a novel VAE model and concomitant variational objective which captures label characteristics explicitly in the latent space, eschewing direct correspondences between label values and latents. Through judicious structuring of mappings between such characteristic latents and labels, we show that the CCVAE can effectively learn meaningful representations of the characteristics of interest across a variety of supervision schemes. In particular, we show that the CCVAE allows for more effective and more general interventions to be performed, such as smooth traversals within the characteristics for a given label, diverse conditional generation, and transferring characteristics across datapoints.
Neural networks have achieved remarkable success in many cognitive tasks. However, when they are trained sequentially on multiple tasks without access to old data, their performance on early tasks tend to drop significantly. This problem is often ref erred to as catastrophic forgetting, a key challenge in continual learning of neural networks. The regularization-based approach is one of the primary classes of methods to alleviate catastrophic forgetting. In this paper, we provide a novel viewpoint of regularization-based continual learning by formulating it as a second-order Taylor approximation of the loss function of each task. This viewpoint leads to a unified framework that can be instantiated to derive many existing algorithms such as Elastic Weight Consolidation and Kronecker factored Laplace approximation. Based on this viewpoint, we study the optimization aspects (i.e., convergence) as well as generalization properties (i.e., finite-sample guarantees) of regularization-based continual learning. Our theoretical results indicate the importance of accurate approximation of the Hessian matrix. The experimental results on several benchmarks provide empirical validation of our theoretical findings.
An implicit goal in works on deep generative models is that such models should be able to generate novel examples that were not previously seen in the training data. In this paper, we investigate to what extent this property holds for widely employed variational autoencoder (VAE) architectures. VAEs maximize a lower bound on the log marginal likelihood, which implies that they will in principle overfit the training data when provided with a sufficiently expressive decoder. In the limit of an infinite capacity decoder, the optimal generative model is a uniform mixture over the training data. More generally, an optimal decoder should output a weighted average over the examples in the training data, where the magnitude of the weights is determined by the proximity in the latent space. This leads to the hypothesis that, for a sufficiently high capacity encoder and decoder, the VAE decoder will perform nearest-neighbor matching according to the coordinates in the latent space. To test this hypothesis, we investigate generalization on the MNIST dataset. We consider both generalization to new examples of previously seen classes, and generalization to the classes that were withheld from the training set. In both cases, we find that reconstructions are closely approximated by nearest neighbors for higher-dimensional parameterizations. When generalizing to unseen classes however, lower-dimensional parameterizations offer a clear advantage.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا