ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective modes at a disordered quantum phase transition

123   0   0.0 ( 0 )
 نشر من قبل Thomas Vojta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the collective excitations, i.e., the Goldstone (phase) mode and the Higgs (amplitude) mode, near the superfluid--Mott glass quantum phase transition in a two-dimensional system of disordered bosons. Using Monte Carlo simulations as well as an inhomogeneous quantum mean-field theory with Gaussian fluctuations, we show that the Higgs mode is strongly localized for all energies, leading to a noncritical scalar response. In contrast, the lowest-energy Goldstone mode undergoes a striking delocalization transition as the system enters the superfluid phase. We discuss the generality of these findings and experimental consequences, and we point out potential relations to many-body localization.



قيم البحث

اقرأ أيضاً

Using a numerically exact technique we study spin transport and the evolution of spin-density excitation profiles in a disordered spin-chain with long-range interactions, decaying as a power-law, $r^{-alpha}$ with distance and $alpha<2$. Our study co nfirms the prediction of recent theories that the system is delocalized in this parameters regime. Moreover we find that for $alpha>3/2$ the underlying transport is diffusive with a transient super-diffusive tail, similarly to the situation in clean long-range systems. We generalize the Griffiths picture to long-range systems and show that it captures the essential properties of the exact dynamics.
It is commonly accepted that there are no phase transitions in one-dimensional (1D) systems at a finite temperature, because long-range correlations are destroyed by thermal fluctuations. Here we demonstrate that the 1D gas of short-range interacting bosons in the presence of disorder can undergo a finite temperature phase transition between two distinct states: fluid and insulator. None of these states has long-range spatial correlations, but this is a true albeit non-conventional phase transition because transport properties are singular at the transition point. In the fluid phase the mass transport is possible, whereas in the insulator phase it is completely blocked even at finite temperatures. We thus reveal how the interaction between disordered bosons influences their Anderson localization. This key question, first raised for electrons in solids, is now crucial for the studies of atomic bosons where recent experiments have demonstrated Anderson localization in expanding very dilute quasi-1D clouds.
We demonstrate that a weakly disordered metal with short-range interactions exhibits a transition in the quantum chaotic dynamics when changing the temperature or the interaction strength. For weak interactions, the system displays exponential growth of the out-of-time-ordered correlator (OTOC) of the current operator. The Lyapunov exponent of this growth is temperature-independent in the limit of vanishing interaction. With increasing the temperature or the interaction strength, the system undergoes a transition to a non-chaotic behaviour, for which the exponential growth of the OTOC is absent. We conjecture that the transition manifests itself in the quasiparticle energy-level statistics and also discuss ways of its explicit observation in cold-atom setups.
Topological phases are often characterized by special edge states confined near the boundaries by an energy gap in the bulk. On raising temperature, these edge states are lost in a clean system due to mobile thermal excitations. Recently however, it has been established that disorder can localize an isolated many body system, potentially allowing for a sharply defined topological phase even in a highly excited state. Here we show this to be the case for the topological phase of a one dimensional magnet with quenched disorder, which features spin one-half excitations at the edges. The time evolution of a simple, highly excited, initial state is used to reveal quantum coherent edge spins. In particular, we demonstrate, using theoretical arguments and numerical simulation, the coherent revival of an edge spin over a time scale that grows exponentially bigger with system size. This is in sharp contrast to the general expectation that quantum bits strongly coupled to a hot many body system will rapidly lose coherence.
In this work, we investigate how the critical driving amplitude at the Floquet MBL-to-ergodic phase transition differs between smooth and non-smooth driving over a wide range of driving frequencies. To this end, we study numerically a disordered spin -1/2 chain which is periodically driven by a sine or a square-wave drive, respectively. In both cases, the critical driving amplitude increases monotonically with the frequency, and at large frequencies, it is identical for the two drives in the appropriate normalization. However, at low and intermediate frequencies the critical amplitude of the square-wave drive depends strongly on the frequency, while the one of the cosine drive is almost constant in a wide frequency range. By analyzing the density of drive-induced resonance in a Fourier space perspective, we conclude that this difference is due to resonances induced by the higher harmonics which are present (absent) in the Fourier spectrum of the square-wave (sine) drive. Furthermore, we suggest a numerically efficient method to estimate the frequency dependence of the critical driving amplitudes for different drives, based on measuring the density of drive-induced resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا