ﻻ يوجد ملخص باللغة العربية
Precision oncology, the genetic sequencing of tumors to identify druggable targets, has emerged as the standard of care in the treatment of many cancers. Nonetheless, due to the pace of therapy development and variability in patient information, designing effective protocols for individual treatment assignment in a sample-efficient way remains a major challenge. One promising approach to this problem is to frame precision oncology treatment as a contextual bandit problem and to apply sequential decision-making algorithms designed to minimize regret in this setting. However, a clear prerequisite for considering this methodology in high-stakes clinical decisions is careful benchmarking to understand realistic costs and benefits. Here, we propose a benchmark dataset to evaluate contextual bandit algorithms based on real in vitro drug response of approximately 900 cancer cell lines. Specifically, we curated a dataset of complete treatment responses for a subset of 7 treatments from prior in vitro studies. This allows us to compute the regret of proposed decision policies using biologically plausible counterfactuals. We ran a suite of Bayesian bandit algorithms on our benchmark, and found that the methods accumulate less regret over a sequence of treatment assignment tasks than a rule-based baseline derived from current clinical practice. This effect was more pronounced when genomic information was included as context. We expect this work to be a starting point for evaluation of both the unique structural requirements and ethical implications for real-world testing of bandit based clinical decision support.
We consider the model selection task in the stochastic contextual bandit setting. Suppose we are given a collection of base contextual bandit algorithms. We provide a master algorithm that combines them and achieves the same performance, up to consta
The backpropagation (BP) algorithm is often thought to be biologically implausible in the brain. One of the main reasons is that BP requires symmetric weight matrices in the feedforward and feedback pathways. To address this weight transport problem
In this work, we describe practical lessons we have learned from successfully using contextual bandits (CBs) to improve key business metrics of the Microsoft Virtual Agent for customer support. While our current use cases focus on single step einforc
Conservative mechanism is a desirable property in decision-making problems which balance the tradeoff between the exploration and exploitation. We propose the novel emph{conservative contextual combinatorial cascading bandit ($C^4$-bandit)}, a cascad
In this paper, we consider the contextual variant of the MNL-Bandit problem. More specifically, we consider a dynamic set optimization problem, where in every round a decision maker offers a subset (assortment) of products to a consumer, and observes