ترغب بنشر مسار تعليمي؟ اضغط هنا

Rydberg-positronium velocity and self-ionization studies in 1T magnetic field and cryogenic environment

112   0   0.0 ( 0 )
 نشر من قبل Benjamin Rien\\\"acker
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterized the pulsed Rydberg-positronium production inside the AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) apparatus in view of antihydrogen formation by means of a charge exchange reaction between cold antiprotons and slow Rydberg-positronium atoms. Velocity measurements on positronium along two axes in a cryogenic environment (10K) and in 1T magnetic field were performed. The velocimetry was done by MCP-imaging of photoionized positronium previously excited to the $n=3$ state. One direction of velocity was measured via Doppler-scan of this $n=3$-line, another direction perpendicular to the former by delaying the exciting laser pulses in a time-of-flight measurement. Self-ionization in the magnetic field due to motional Stark effect was also quantified by using the same MCP-imaging technique for Rydberg positronium with an effective principal quantum number $n_{eff}$ ranging between 14 and 22. We conclude with a discussion about the optimization of our experimental parameters for creating Rydberg-positronium in preparation for an efficient pulsed production of antihydrogen.



قيم البحث

اقرأ أيضاً

The antihydrogen formation by charge exchange between cold antiprotons and Rydberg positronium Ps is studied by using the Classical Trajectory Monte Carlo (CTMC) method.
Target ionization processes of alkali atoms by Positronium impact are investigated. Calculations are performed in the frame work of model potential formalism using the Coulomb distorted eikonal approximation. Interesting qualitative features are note d both in the scattered Ps and the ejected electron distributions in differential as well as double differential levels of the collision cross sections.
The effect of confinement on the self-annihilation rate of positronium is studied in three levels of approximation. Artificial restriction of the electron-positron separation leads to an increase in the annihilation rate over its vacuum value; this i ncrease is found to diminish exponentially as the maximum separation is increased. Confinement in a hard-wall spherical cavity with the center of mass free to move throughout the cavity also increases the annihilation rate over its vacuum value; the increase depends weakly on the position of the center of mass, being larger when the center of mass is near the cavity wall. Finally, to model confinement in a pore of a microporous material, the hard wall is replaced by physically motivated electron- and positron-wall potentials; it is found that the annihilation rate is larger than its vacuum value, in contradiction to calculations of Marlotti Tanzi et al. [Phys. Rev. Lett. 116, 033401 (2016)] that assumed hard-wall confinement for the electrons, and experimental data.
Pulsed field ionization of high-$n$ (90 $leq n leq$ 150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated $n$ region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing $n$, exceeding 80% at $n$ = 147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show for the first time that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms.
This work reports on the application of a novel electric field-ionization setup for high-resolution laser spectroscopy measurements on bunched fast atomic beams in a collinear geometry. In combination with multi-step resonant excitation to Rydberg st ates using pulsed lasers, the field ionization technique demonstrates increased sensitivity for isotope separation and measurement of atomic parameters over non-resonant laser ionization methods. The setup was tested at the Collinear Resonance Ionization Spectroscopy experiment at ISOLDE-CERN to perform high-resolution measurements of transitions in the indium atom from the 5s$^2$5d~$^2$D$_{5/2}$ and 5s$^2$5d~$^2$D$_{3/2}$ states to 5s$^2$($n$)p~$^2$P and 5s$^2$($n$)f~$^2$F Rydberg states, up to a principal quantum number of $n$ = 72. The extracted Rydberg level energies were used to re-evaluate the ionization potential of the indium atom to be 46670.1055(21) cm$^{-1}$. The nuclear magnetic dipole and nuclear electric quadrupole hyperfine structure constants and level isotope shifts of the 5s$^2$5d~$^2$D$_{5/2}$ and 5s$^2$5d~$^2$D$_{3/2}$ states were determined for $^{113,115}$In. The results are compared to calculations using relativistic coupled-cluster theory. A good agreement is found with the ionization potential and isotope shifts, while disagreement of hyperfine structure constants indicates an increased importance of electron correlations in these excited atomic states. With the aim of further increasing the detection sensitivity for measurements on exotic isotopes, a systematic study of the field-ionization arrangement implemented in the work was performed and an improved design was simulated and is presented. The improved design offers increased background suppression independent of the distance from field ionization to ion detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا