ترغب بنشر مسار تعليمي؟ اضغط هنا

Positronium impact ionization of Alkali atoms

61   0   0.0 ( 0 )
 نشر من قبل Chandana Sinha Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Target ionization processes of alkali atoms by Positronium impact are investigated. Calculations are performed in the frame work of model potential formalism using the Coulomb distorted eikonal approximation. Interesting qualitative features are noted both in the scattered Ps and the ejected electron distributions in differential as well as double differential levels of the collision cross sections.

قيم البحث

اقرأ أيضاً

89 - Z. X. Zhao , T. Brabec 2006
A generalized ADK (Ammosov-Delone-Krainov) theory for ionization of open shell atoms is compared to ionization experiments performed on the transition metal atoms V, Ni, Pd, Ta, and Nb. Our theory is found to be in good agreement for V, Ni, Pd, and T a, whereas conventional ADK theory overestimates ionization by orders of magnitude. The key to understanding the observed ionization reduction is the angular momentum barrier. Our analysis shows that the determination of the angular momentum barrier in open shell atoms is nontrivial. The Stark shift is identified as the second dominant effect responsible for ionization suppression. Finally, these two effects cannot explain the Nb data. An analysis of the electron spins suggests that Pauli blocking might be responsible for the suppression of tunneling in Nb.
We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkalineearth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope 6Li with evaporatively cooled bosonic 174Yb and, separately, fermionic 173Yb.Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a6Li-174Yb| = 1.0pm0.2 nm and |a6Li-173Yb| = 0.9pm0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.
We present calculations of spin-relaxation rates of alkali-metal atoms due to the spin-axis interaction acting in binary collisions between the atoms. We show that for the high-temperature conditions of interest here, the spin relaxation rates calcul ated with classical-path trajectories are nearly the same as those calculated with the distorted-wave Born approximation. We compare these calculations to recent experiments that used magnetic decoupling to isolate spin relaxation due to binary collisions from that due to the formation of triplet van-der-Waals molecules. The values of the spin-axis coupling coefficients deduced from measurements of binary collision rates are consistent with those deduced from molecular decoupling experiments. All the experimental data is consistent with a simple and physically plausible scaling law for the spin-axis coupling coefficients.
We have studied an ionization of alkali-metal Rydberg atoms by blackbody radiation (BBR). The results of the theoretical calculations of ionization rates of Li, Na, K, Rb and Cs Rydberg atoms are presented. Calculations have been performed for nS, nP and nD states which are commonly used in a variety of experiments, at principal quantum numbers n=8-65 and at the three ambient temperatures of 77, 300 and 600 K. A peculiarity of our calculations is that we take into account the contributions of BBR-induced redistribution of population between Rydberg states prior to photoionization and field ionization by extraction electric field pulses. The obtained results show that these phenomena affect both the magnitude of measured ionization rates and shapes of their dependences on n. A Cooper minimum for BBR-induced transitions between bound Rydberg states of Li has been found. The calculated ionization rates are compared with our earlier measurements of BBR-induced ionization rates of Na nS and nD Rydberg states with n=8-20 at 300 K. A good agreement for all states except nS with n>15 is observed. Useful analytical formulas for quick estimation of BBR ionization rates of Rydberg atoms are presented. Application of BBR-induced ionization signal to measurements of collisional ionization rates is demonstrated.
Electron-impact direct double ionization (DDI) process is studied as a sequence of two and three step processes. Contribution from ionization-ionization, ionization-excitation-ionization, and excitation-ionization-ionization processes is taken into a ccount. The present results help to resolve the long-standing discrepancies; in particular, a good agreement with experimental measurements is obtained for double ionization cross-sections of $O^{1+}$, $O^{2+}$, $O^{3+}$, $C^{1+}$, and $Ar^{2+}$ ions. We show that distribution of the energy of scattered and ejected electrons, which participate in the next step of ionization, strongly affects DDI cross-sections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا