ترغب بنشر مسار تعليمي؟ اضغط هنا

Band-dependent superconducting gap in SrFe$_{2}$(As$_{0.65}$P$_{0.35}$)$_{2}$ studied by angle-resolved photoemission spectroscopy

77   0   0.0 ( 0 )
 نشر من قبل Hakuto Suzuki
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The isovalent-substituted iron pnictide compound SrFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ exhibits multiple evidence for nodal superconductivity via various experimental probes, such as the penetration depth, nuclear magnetic resonance and specific heat measurements. The direct identification of the nodal superconducting (SC) gap structure is challenging, partly because the presence of nodes is not protected by symmetry but instead caused by an accidental sign change of the order parameter, and also because of the three-dimensionality of the electronic structure. We have studied the SC gaps of SrFe$_{2}$(As$_{0.65}$P$_{0.35}$)$_{2}$ in three-dimensional momentum space by synchrotron and laser-based angle-resolved photoemission spectroscopy. The three hole Fermi surfaces (FSs) at the zone center have SC gaps with different magnitudes, whereas the SC gaps of the electron FSs at the zone corner are almost isotropic and $k_{z}$-independent. We propose that the SC gap of the outer hole FS changes sign around the Z-X [($0, 0, 2pi$)-($pi,pi, 2pi$)] direction.



قيم البحث

اقرأ أيضاً

175 - K. Nakayama , T. Sato , P. Richard 2009
We have performed high-resolution angle-resolved photoemission spectroscopy on the optimally-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ compound and determined the accurate momentum dependence of the superconducting (SC) gap in four Fermi-surface sheets i ncluding a newly discovered outer electron pocket at the M point. The SC gap on this pocket is nearly isotropic and its magnitude is comparable ($Delta$ $sim$ 11 meV) to that of the inner electron and hole pockets ($sim$12 meV), although it is substantially larger than that of the outer hole pocket ($sim$6 meV). The Fermi-surface dependence of the SC gap value is basically consistent with $Delta$($k$) = $Delta$$_0$cos$k_x$cos$k_y$ formula expected for the extended s-wave symmetry. The observed finite deviation from the simple formula suggests the importance of multi-orbital effects.
The isovalent-substituted iron-pnictide superconductor SrFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ ($x$=0.35) has a slightly higher optimum critical temperature than the similar system BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$, and its parent compound SrFe$_{2}$As $_{2}$ has a much higher Neel temperature than BaFe$_{2}$As$_{2}$. We have studied the band structure and the Fermi surfaces of optimally-doped SrFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ by angle-resolved photoemission spectroscopy (ARPES). Three holelike Fermi surfaces (FSs) around (0,0) and two electronlike FSs around ($pi$,$pi$) have been observed as in the case of BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$. Measurements with different photon energies have revealed that one of the hole FSs is more strongly warped along the $k_{z}$ direction than the corresponding one in BaFe(As$_{1-x}$P$_{x}$)$_{2}$, while the electron FSs are almost cylindrical unlike corrugated ones in BaFe(As$_{1-x}$P$_{x}$)$_{2}$. Comparison of the ARPES data with first-principles band-structure calculation revealed that the quasiparticle mass renormalization factors are different not only between bands of different orbital character but also between the hole and electron FSs of the same orbital character. By examining nesting conditions between the hole and electron FSs, we conclude that magnetic interactions between FeAs layers rather than FS nesting play an important role in stabilizing the antiferromagnetic order. The insensitivity of superconductivity to the FS nesting can be explained if only the $d_{xy}$ and/or $d_{xz/yz}$ orbitals are active in inducing superconductivity or if FS nesting is not important for superconductivity.
134 - M. Shi , J. Chang , S. Pailhes 2008
We present angle-resolved photoemission spectroscopy (ARPES) data on moderately underdoped La$_{1.855}$Sr$_{0.145}$CuO$_4$ at temperatures below and above the superconducting transition temperature. Unlike previous studies of this material, we observ e sharp spectral peaks along the entire underlying Fermi surface in the superconducting state. These peaks trace out an energy gap that follows a simple {it d}-wave form, with a maximum superconducting gap of 14 meV. Our results are consistent with a single gap picture for the cuprates. Furthermore our data on the even more underdoped sample La$_{1.895}$Sr$_{0.105}$CuO$_4$ also show sharp spectral peaks, even at the antinode, with a maximum superconducting gap of 26 meV.
We have performed high resolution angle-resolved photoemission measurements on superconducting electron-doped NaFe$_{0.95}$Co$_{0.05}$As ($T_{c}sim$18 K). We observed a hole-like Fermi surface around the zone center and two electron-like Fermi surfac es around the M point which can be connected by the $Q=(pi, pi)$ wavevector, suggesting that scattering over the near-nested Fermi surfaces is important to the superconductivity of this 111 pnicitide. Nearly isotropic superconducting gaps with sharp coherent peaks are observed below $T_c$ on all three Fermi surfaces. Upon increasing temperature through $T_c$, the gap size shows little change while the coherence vanishes. Large ratios of $2Delta/k_{B}T_{c}sim8$ are observed for all the bands, indicating a strong coupling in this system. These results are not expected from a classical phonon-mediated pairing mechanism.
We performed polarization- and photon-energy-dependent angle-resolved photoemission spectroscopy of a slightly overdoped iron pnictide superconductor, BaFe$_{1.8}$Co$_{0.2}$As$_{2}$, to clarify the three-dimensional electronic structure including its orbital characters at the Brillouin zone center. Two hole Fermi surfaces (FSs) with $d_{xz/yz}$ and $d_{xy/x^2-y^2}$ orbitals were observed but $d_{z^2}$ hole FS, which has nodes according to a theory of the spin-fluctuation superconductivity mechanism, did not appear. These results suggest that no node will appear at hole FSs at the zone center.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا