ﻻ يوجد ملخص باللغة العربية
We present angle-resolved photoemission spectroscopy (ARPES) data on moderately underdoped La$_{1.855}$Sr$_{0.145}$CuO$_4$ at temperatures below and above the superconducting transition temperature. Unlike previous studies of this material, we observe sharp spectral peaks along the entire underlying Fermi surface in the superconducting state. These peaks trace out an energy gap that follows a simple {it d}-wave form, with a maximum superconducting gap of 14 meV. Our results are consistent with a single gap picture for the cuprates. Furthermore our data on the even more underdoped sample La$_{1.895}$Sr$_{0.105}$CuO$_4$ also show sharp spectral peaks, even at the antinode, with a maximum superconducting gap of 26 meV.
The momentum and temperature dependence of the superconducting gap and pseudogap in optimally-doped Bi$_2$Sr$_{1.6}$La$_{0.4}$CuO$_6$ superconductor is investigated by super-high resolution laser-based angle-resolved photoemission spectroscopy. The m
We have performed high-resolution angle-resolved photoemission spectroscopy on the optimally-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ compound and determined the accurate momentum dependence of the superconducting (SC) gap in four Fermi-surface sheets i
The discovery of charge- and spin-density-wave (CDW/SDW) orders in superconducting cuprates has altered our perspective on the nature of high-temperature superconductivity (SC). However, it has proven difficult to fully elucidate the relationship bet
We report an angle-resolved photoemission study of the charge stripe ordered La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ system. A comparative and quantitative line shape analysis is presented as the system evolves from the overdoped regime into the charge o
We observe apparent hole pockets in the Fermi surfaces of single-layer Bi-based cuprate superconductors from angle-resolved photoemission (ARPES). From detailed low-energy electron diffraction measurements and an analysis of the ARPES polarization-de