ترغب بنشر مسار تعليمي؟ اضغط هنا

Invariant Representations through Adversarial Forgetting

74   0   0.0 ( 0 )
 نشر من قبل Ayush Jaiswal
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel approach to achieving invariance for deep neural networks in the form of inducing amnesia to unwanted factors of data through a new adversarial forgetting mechanism. We show that the forgetting mechanism serves as an information-bottleneck, which is manipulated by the adversarial training to learn invariance to unwanted factors. Empirical results show that the proposed framework achieves state-of-the-art performance at learning invariance in both nuisance and bias settings on a diverse collection of datasets and tasks.



قيم البحث

اقرأ أيضاً

154 - Jian Peng , Bo Tang , Hao Jiang 2019
Artificial neural networks face the well-known problem of catastrophic forgetting. Whats worse, the degradation of previously learned skills becomes more severe as the task sequence increases, known as the long-term catastrophic forgetting. It is due to two facts: first, as the model learns more tasks, the intersection of the low-error parameter subspace satisfying for these tasks becomes smaller or even does not exist; second, when the model learns a new task, the cumulative error keeps increasing as the model tries to protect the parameter configuration of previous tasks from interference. Inspired by the memory consolidation mechanism in mammalian brains with synaptic plasticity, we propose a confrontation mechanism in which Adversarial Neural Pruning and synaptic Consolidation (ANPyC) is used to overcome the long-term catastrophic forgetting issue. The neural pruning acts as long-term depression to prune task-irrelevant parameters, while the novel synaptic consolidation acts as long-term potentiation to strengthen task-relevant parameters. During the training, this confrontation achieves a balance in that only crucial parameters remain, and non-significant parameters are freed to learn subsequent tasks. ANPyC avoids forgetting important information and makes the model efficient to learn a large number of tasks. Specifically, the neural pruning iteratively relaxes the current tasks parameter conditions to expand the common parameter subspace of the task; the synaptic consolidation strategy, which consists of a structure-aware parameter-importance measurement and an element-wise parameter updating strategy, decreases the cumulative error when learning new tasks. The full source code is available at https://github.com/GeoX-Lab/ANPyC.
We investigate the power of censoring techniques, first developed for learning {em fair representations}, to address domain generalization. We examine {em adversarial} censoring techniques for learning invariant representations from multiple studies (or domains), where each study is drawn according to a distribution on domains. The mapping is used at test time to classify instances from a new domain. In many contexts, such as medical forecasting, domain generalization from studies in populous areas (where data are plentiful), to geographically remote populations (for which no training data exist) provides fairness of a different flavor, not anticipated in previous work on algorithmic fairness. We study an adversarial loss function for $k$ domains and precisely characterize its limiting behavior as $k$ grows, formalizing and proving the intuition, backed by experiments, that observing data from a larger number of domains helps. The limiting results are accompanied by non-asymptotic learning-theoretic bounds. Furthermore, we obtain sufficient conditions for good worst-case prediction performance of our algorithm on previously unseen domains. Finally, we decompose our mappings into two components and provide a complete characterization of invariance in terms of this decomposition. To our knowledge, our results provide the first formal guarantees of these kinds for adversarial invariant domain generalization.
Learning domain-invariant representation is a dominant approach for domain generalization (DG), where we need to build a classifier that is robust toward domain shifts. However, previous domain-invariance-based methods overlooked the underlying depen dency of classes on domains, which is responsible for the trade-off between classification accuracy and domain invariance. Because the primary purpose of DG is to classify unseen domains rather than the invariance itself, the improvement of the invariance can negatively affect DG performance under this trade-off. To overcome the problem, this study first expands the analysis of the trade-off by Xie et. al., and provides the notion of accuracy-constrained domain invariance, which means the maximum domain invariance within a range that does not interfere with accuracy. We then propose a novel method adversarial feature learning with accuracy constraint (AFLAC), which explicitly leads to that invariance on adversarial training. Empirical validations show that the performance of AFLAC is superior to that of domain-invariance-based methods on both synthetic and three real-world datasets, supporting the importance of considering the dependency and the efficacy of the proposed method.
Training deep neural networks is known to require a large number of training samples. However, in many applications only few training samples are available. In this work, we tackle the issue of training neural networks for classification task when fe w training samples are available. We attempt to solve this issue by proposing a new regularization term that constrains the hidden layers of a network to learn class-wise invariant representations. In our regularization framework, learning invariant representations is generalized to the class membership where samples with the same class should have the same representation. Numerical experiments over MNIST and its variants showed that our proposal helps improving the generalization of neural network particularly when trained with few samples. We provide the source code of our framework https://github.com/sbelharbi/learning-class-invariant-features .
A central challenge in developing versatile machine learning systems is catastrophic forgetting: a model trained on tasks in sequence will suffer significant performance drops on earlier tasks. Despite the ubiquity of catastrophic forgetting, there i s limited understanding of the underlying process and its causes. In this paper, we address this important knowledge gap, investigating how forgetting affects representations in neural network models. Through representational analysis techniques, we find that deeper layers are disproportionately the source of forgetting. Supporting this, a study of methods to mitigate forgetting illustrates that they act to stabilize deeper layers. These insights enable the development of an analytic argument and empirical picture relating the degree of forgetting to representational similarity between tasks. Consistent with this picture, we observe maximal forgetting occurs for task sequences with intermediate similarity. We perform empirical studies on the standard split CIFAR-10 setup and also introduce a novel CIFAR-100 based task approximating realistic input distribution shift.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا