ﻻ يوجد ملخص باللغة العربية
Central to the AdS/CFT correspondence is a precise relationship between the curvature of an anti-de Sitter (AdS) spacetime and the central charge of the dual conformal field theory (CFT) on its boundary. Our work shows that such a relationship can also be established for tensor network models of AdS/CFT based on regular bulk geometries, leading to an analytical form of the maximal central charges exhibited by the boundary states. We identify a class of tensors based on Majorana dimer states that saturate these bounds in the large curvature limit, while also realizing perfect and block-perfect holographic quantum error correcting codes. Furthermore, the renormalization group description of the resulting model is shown to be analogous to the strong disorder renormalization group, thus giving the first example of an exact quantum error correcting code that gives rise to a well-understood critical system. These systems exhibit a large range of fractional central charges, tunable by the choice of bulk tiling. Our approach thus provides a precise physical interpretation of tensor network models on regular hyperbolic geometries and establishes quantitative connections to a wide range of existing models.
Using the recently developed fractional Virasoro algebra cite{la_nave_fractional_2019}, we construct a class of nonlocal CFTs with OPEs of the form $T_k(z)Phi(w) sim frac{ h_gamma Phi}{(z-w)^{1+gamma}}+frac{partial_w^gamma Phi}{z-w},$ and $T_k(z)T_k(
Recent progress in studies of holographic dualities, originally motivated by insights from string theory, has led to a confluence with concepts and techniques from quantum information theory. A particularly successful approach has involved capturing
It is known that the $(a,c)$ central charges in four-dimensional CFTs are linear combinations of the three independent OPE coefficients of the stress-tensor three-point function. In this paper, we adopt the holographic approach using AdS gravity as a
The Hall and longitudinal conductivities of a recently studied holographic model of a quantum Hall ferromagnet are computed using the Karch-OBannon technique. In addition, the low temperature entropy of the model is determined. The holographic model
The study of critical quantum many-body systems through conformal field theory (CFT) is one of the pillars of modern quantum physics. Certain CFTs are also understood to be dual to higher-dimensional theories of gravity via the anti-de Sitter/conform