ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic tensor network models and quantum error correction: A topical review

152   0   0.0 ( 0 )
 نشر من قبل Alexander Jahn
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent progress in studies of holographic dualities, originally motivated by insights from string theory, has led to a confluence with concepts and techniques from quantum information theory. A particularly successful approach has involved capturing holographic properties by means of tensor networks which not only give rise to physically meaningful correlations of holographic boundary states, but also reproduce and refine features of quantum error correction in holography. This topical review provides an overview over recent successful realizations of such models. It does so by building on an introduction of the theoretical foundations of AdS/CFT and necessary quantum information concepts, many of which have themselves developed into independent, rapidly evolving research fields.



قيم البحث

اقرأ أيضاً

We consider a class of holographic tensor networks that are efficiently contractible variational ansatze, manifestly (approximate) quantum error correction codes, and can support power-law correlation functions. In the case when the network consists of a single type of tensor that also acts as an erasure correction code, we show that it cannot be both locally contractible and sustain power-law correlation functions. Motivated by this no-go theorem, and the desirability of local contractibility for an efficient variational ansatz, we provide guidelines for constructing networks consisting of multiple types of tensors that can support power-law correlation. We also provide an explicit construction of one such network, which approximates the holographic HaPPY pentagon code in the limit where variational parameters are taken to be small.
The study of critical quantum many-body systems through conformal field theory (CFT) is one of the pillars of modern quantum physics. Certain CFTs are also understood to be dual to higher-dimensional theories of gravity via the anti-de Sitter/conform al field theory (AdS/CFT) correspondence. To reproduce various features of AdS/CFT, a large number of discrete models based on tensor networks have been proposed. Some recent models, most notably including toy models of holographic quantum error correction, are constructed on regular time-slice discretizations of AdS. In this work, we show that the symmetries of these models are well suited for approximating CFT states, as their geometry enforces a discrete subgroup of conformal symmetries. Based on these symmetries, we introduce the notion of a quasiperiodic conformal field theory (qCFT), a critical theory less restrictive than full CFT with characteristic multi-scale quasiperiodicity. We discuss holographic code states and their renormalization group flow as specific implementations of a qCFT with fractional central charges and argue that their behavior generalizes to a large class of existing and future models. Beyond approximating CFT properties, we show that these can be best understood as belonging to a new paradigm of discrete holography.
A sort of planar tensor networks with tensor constraints is investigated as a model for holography. We study the greedy algorithm generated by tensor constraints and propose the notion of critical protection (CP) against the action of greedy algorith m. For given tensor constraints, a CP tensor chain can be defined. We further find that the ability of quantum error correction (QEC), the non-flatness of entanglement spectrum (ES) and the correlation function can be quantitatively evaluated by the geometric structure of CP tensor chain. Four classes of tensor networks with different properties of entanglement is discussed. Thanks to tensor constraints and CP, the correlation function is reduced into a bracket of Matrix Production State and the result agrees with the one in conformal field theory.
The efficient validation of quantum devices is critical for emerging technological applications. In a wide class of use-cases the precise engineering of a Hamiltonian is required both for the implementation of gate-based quantum information processin g as well as for reliable quantum memories. Inferring the experimentally realized Hamiltonian through a scalable number of measurements constitutes the challenging task of Hamiltonian learning. In particular, assessing the quality of the implementation of topological codes is essential for quantum error correction. Here, we introduce a neural net based approach to this challenge. We capitalize on a family of exactly solvable models to train our algorithm and generalize to a broad class of experimentally relevant sources of errors. We discuss how our algorithm scales with system size and analyze its resilience towards various noise sources.
Quantum error correction and symmetry arise in many areas of physics, including many-body systems, metrology in the presence of noise, fault-tolerant computation, and holographic quantum gravity. Here we study the compatibility of these two important principles. If a logical quantum system is encoded into $n$ physical subsystems, we say that the code is covariant with respect to a symmetry group $G$ if a $G$ transformation on the logical system can be realized by performing transformations on the individual subsystems. For a $G$-covariant code with $G$ a continuous group, we derive a lower bound on the error correction infidelity following erasure of a subsystem. This bound approaches zero when the number of subsystems $n$ or the dimension $d$ of each subsystem is large. We exhibit codes achieving approximately the same scaling of infidelity with $n$ or $d$ as the lower bound. Leveraging tools from representation theory, we prove an approximate version of the Eastin-Knill theorem: If a code admits a universal set of transversal gates and corrects erasure with fixed accuracy, then, for each logical qubit, we need a number of physical qubits per subsystem that is inversely proportional to the error parameter. We construct codes covariant with respect to the full logical unitary group, achieving good accuracy for large $d$ (using random codes) or $n$ (using codes based on $W$-states). We systematically construct codes covariant with respect to general groups, obtaining natural generalizations of qubit codes to, for instance, oscillators and rotors. In the context of the AdS/CFT correspondence, our approach provides insight into how time evolution in the bulk corresponds to time evolution on the boundary without violating the Eastin-Knill theorem, and our five-rotor code can be stacked to form a covariant holographic code.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا