ترغب بنشر مسار تعليمي؟ اضغط هنا

Online Learning and Optimization Under a New Linear-Threshold Model with Negative Influence

71   0   0.0 ( 0 )
 نشر من قبل Shuoguang Yang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Problem definition: Corporate brands, grassroots activists, and ordinary citizens all routinely employ Word-of-mouth (WoM) diffusion to promote products and instigate social change. Our work models the formation and spread of negative attitudes via WoM on a social network represented by a directed graph. In an online learning setting, we examine how an agent could simultaneously learn diffusion parameters and choose sets of seed users to initiate diffusions and maximize positive influence. In contrast to edge-level feedback, in which an agent observes the relationship (edge) through which a user (node) is influenced, we more realistically assume node-level feedback, where an agent only observes when a user is influenced and whether that influence is positive or negative. Methodology/results: We propose a new class of negativity-aware Linear Threshold Models. We show that in these models, the expected positive influence spread is a monotone submodular function of the seed set. Therefore, when maximizing positive influence by selecting a seed set of fixed size, a greedy algorithm can guarantee a solution with a constant approximation ratio. For the online learning setting, we propose an algorithm that runs in epochs of growing lengths, each consisting of a fixed number of exploration rounds followed by an increasing number of exploitation rounds controlled by a hyperparameter. Under mild assumptions, we show that our algorithm achieves asymptotic expected average scaled regret that is inversely related to any fractional constant power of the number of rounds. Managerial implications: During seed selection, our negativity-aware models and algorithms allow WoM campaigns to discover and best account for characteristics of local users and propagated content. We also give the first algorithms with regret guarantees for influence maximization under node-level feedback.



قيم البحث

اقرأ أيضاً

471 - Xinran He , Guojie Song , Wei Chen 2011
In many real-world situations, different and often opposite opinions, innovations, or products are competing with one another for their social influence in a networked society. In this paper, we study competitive influence propagation in social netwo rks under the competitive linear threshold (CLT) model, an extension to the classic linear threshold model. Under the CLT model, we focus on the problem that one entity tries to block the influence propagation of its competing entity as much as possible by strategically selecting a number of seed nodes that could initiate its own influence propagation. We call this problem the influence blocking maximization (IBM) problem. We prove that the objective function of IBM in the CLT model is submodular, and thus a greedy algorithm could achieve 1-1/e approximation ratio. However, the greedy algorithm requires Monte-Carlo simulations of competitive influence propagation, which makes the algorithm not efficient. We design an efficient algorithm CLDAG, which utilizes the properties of the CLT model, to address this issue. We conduct extensive simulations of CLDAG, the greedy algorithm, and other baseline algorithms on real-world and synthetic datasets. Our results show that CLDAG is able to provide best accuracy in par with the greedy algorithm and often better than other algorithms, while it is two orders of magnitude faster than the greedy algorithm.
76 - Hongtao Liu 2019
A growing number of empirical studies suggest that negative advertising is effective in campaigning, while the mechanisms are rarely mentioned. With the scandal of Cambridge Analytica and Russian intervention behind the Brexit and the 2016 presidenti al election, people have become aware of the political ads on social media and have pressured congress to restrict political advertising on social media. Following the related legislation, social media companies began disclosing their political ads archive for transparency during the summer of 2018 when the midterm election campaign was just beginning. This research collects the data of the related political ads in the context of the U.S. midterm elections since August to study the overall pattern of political ads on social media and uses sets of machine learning methods to conduct sentiment analysis on these ads to classify the negative ads. A novel approach is applied that uses AI image recognition to study the image data. Through data visualization, this research shows that negative advertising is still the minority, Republican advertisers and third party organizations are more likely to engage in negative advertising than their counterparts. Based on ordinal regressions, this study finds that anger evoked information-seeking is one of the main mechanisms causing negative ads to be more engaging and effective rather than the negative bias theory. Overall, this study provides a unique understanding of political advertising on social media by applying innovative data science methods. Further studies can extend the findings, methods, and datasets in this study, and several suggestions are given for future research.
We study the online influence maximization problem in social networks under the independent cascade model. Specifically, we aim to learn the set of best influencers in a social network online while repeatedly interacting with it. We address the chall enges of (i) combinatorial action space, since the number of feasible influencer sets grows exponentially with the maximum number of influencers, and (ii) limited feedback, since only the influenced portion of the network is observed. Under a stochastic semi-bandit feedback, we propose and analyze IMLinUCB, a computationally efficient UCB-based algorithm. Our bounds on the cumulative regret are polynomial in all quantities of interest, achieve near-optimal dependence on the number of interactions and reflect the topology of the network and the activation probabilities of its edges, thereby giving insights on the problem complexity. To the best of our knowledge, these are the first such results. Our experiments show that in several representative graph topologies, the regret of IMLinUCB scales as suggested by our upper bounds. IMLinUCB permits linear generalization and thus is both statistically and computationally suitable for large-scale problems. Our experiments also show that IMLinUCB with linear generalization can lead to low regret in real-world online influence maximization.
198 - Xinran He , Ke Xu , David Kempe 2016
We study the problem of learning influence functions under incomplete observations of node activations. Incomplete observations are a major concern as most (online and real-world) social networks are not fully observable. We establish both proper and improper PAC learnability of influence functions under randomly missing observations. Proper PAC learnability under the Discrete-Time Linear Threshold (DLT) and Discrete-Time Independent Cascade (DIC) models is established by reducing incomplete observations to complete observations in a modified graph. Our improper PAC learnability result applies for the DLT and DIC models as well as the Continuous-Time Independent Cascade (CIC) model. It is based on a parametrization in terms of reachability features, and also gives rise to an efficient and practical heuristic. Experiments on synthetic and real-world datasets demonstrate the ability of our method to compensate even for a fairly large fraction of missing observations.
Several behavioral, social, and public health interventions, such as suicide/HIV prevention or community preparedness against natural disasters, leverage social network information to maximize outreach. Algorithmic influence maximization techniques h ave been proposed to aid with the choice of peer leaders or influencers in such interventions. Yet, traditional algorithms for influence maximization have not been designed with these interventions in mind. As a result, they may disproportionately exclude minority communities from the benefits of the intervention. This has motivated research on fair influence maximization. Existing techniques come with two major drawbacks. First, they require committing to a single fairness measure. Second, these measures are typically imposed as strict constraints leading to undesirable properties such as wastage of resources. To address these shortcomings, we provide a principled characterization of the properties that a fair influence maximization algorithm should satisfy. In particular, we propose a framework based on social welfare theory, wherein the cardinal utilities derived by each community are aggregated using the isoelastic social welfare functions. Under this framework, the trade-off between fairness and efficiency can be controlled by a single inequality aversion design parameter. We then show under what circumstances our proposed principles can be satisfied by a welfare function. The resulting optimization problem is monotone and submodular and can be solved efficiently with optimality guarantees. Our framework encompasses as special cases leximin and proportional fairness. Extensive experiments on synthetic and real world datasets including a case study on landslide risk management demonstrate the efficacy of the proposed framework.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا