ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral index-mass accretion rate correlation and evaluation of black hole masses in AGNs 3C~454.3 and M87

105   0   0.0 ( 0 )
 نشر من قبل Titarchuk Lev
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the discovery of correlations between the X-ray spectral (photon) index and mass accretion rate observed in active galactic nuclei (AGNs) 3C~454.3 and M87. We analyzed spectral transition episodes observed in these AGNs using Chandra, Swift, Suzaku, BeppoSAX, ASCA and RXTE data. We applied a scaling technique for a black hole (BH) mass evaluation which uses a correlation between the photon index (Gamma) and normalization of the seed component which is proportional to a disk mass accretion rate Mdot. We developed an analytical model that shows that Gamma of the BH emergent spectrum undergoes an evolution from lower to higher values depending on Mdot. To estimate a BH mass in 3C~454.3 we consider extra-galactic SMBHs NGC~4051 and NGC~7469 as well as Galactic BHs Cygnus X--1 and GRO~J1550--564 as reference sources for which distances, inclination angles are known and the BH masses are already evaluated. For M87 on the other hand, we provide the BH mass scaling using extra-galactic sources (IMBHs: ESO 243-49 HLX 1 and M 101 ULX--1) and Galactic sources (stellar mass BHs: XTE J1550-564, 4U 1630-472, GRS 1915+105 and H 1743-322) as reference sources. Application of the scaling technique for the photon index-Mdot correlation provides estimates of the BH masses in 3C 454.3 and M87 to be about 3.4x10^9 and 5.6 x10^7 solar masses, respectively. We also compared our scaling BH mass estimates with a recent BH mass estimate of M_{87}=6.5x 10^9 M_{odot} made using the {Event Horizon Telescope} which gives an image at 1.3 mm and is based on the angular size of the `BH event horizon. Our BH mass estimate in M87 is at least two orders of magnitude lower than that made by the EHT team.

قيم البحث

اقرأ أيضاً

We present a discovery of the correlation between the X-ray spectral (photon) index and mass accretion rate observed in AGN NGC 4051. We analyzed spectral transition episodes observed in NGC 4051 using XMM/Newton, Suzaku and RXTE. We applied a scalin g technique for a black hole (BH) mass evaluation which uses a correlation between the photon index and normalization of the seed (disk) component, which is proportional to a mass accretion rate. We developed an analytical model that shows the spectral (photon) index of the BH emergent spectrum undergoes an evolution from lower to higher values depending on a mass accretion rate in the accretion disk. We considered Cygnus X-1 and GRO~J1550-564 as reference sources for which distances, inclination angles and the BH masses are evaluated by dynamical measurements. Application of the scaling technique for the photon index-mass accretion rate correlation provides an estimate of the black hole mass in NGC 4051 to be more than 6x10^5 solar masses.
56 - Lev Titarchuk 2015
We report the results of Swift and Chandra observations of an ultra-luminous X-ray source, ULX-1 in M101. We show strong observational evidence that M101 ULX-1 undergoes spectral transitions from the low/hard state to the high/soft state during these observations. The spectra of M101 ULX-1 are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index (Gamma) saturation level, Gamma_{sat}=2.8 +/- 0.1, in the Gamma vs. mass accretion rate (dot M) correlation. This Gamma-dot M correlation allows us to evaluate black hole (BH) mass in M101 ULX-1 to be M_{BH}~(3.2 - 4.3)x10^4 solar masses assuming the spread in distance to M101 (from 6.4+/- 0.5 Mpc to 7.4+/-0.6 Mpc). For this BH mass estimate we use the scaling method taking Galactic BHs XTE~J1550-564, H~1743-322 and 4U~1630-472 as reference sources. The Gamma vs. dot M correlation revealed in M101~ULX-1 is similar to that in a number of Galactic BHs and exhibits clearly the correlation along with the strong Gamma saturation at ~2.8. This is robust observational evidence for the presence of a BH in M101 ULX-1. We also find that the seed (disk) photon temperatures are quite low, of order of 40-100 eV which is consistent with high BH mass in M101~ULX-1. Thus, we suggest that the central object in M101 ULX-1 has intermediate BH mass of order 10^{4} solar masses
We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) us ing two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42+/-3 micro-as and constrain its fractional width to be <0.5. Associating the crescent feature with the emission surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc2 = 3.8+/- 0.4 micro-as. Folding in a distance measurement of 16.8(+0.8,-0.7) Mpc gives a black hole mass of M = 6.5 +/- 0.2(stat) +/-0.7(sys) 10^9 Msun. This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity.
We present a new suite of hydrodynamical simulations and use it to study, in detail, black hole and galaxy properties. The high time, spatial and mass resolution, and realistic orbits and mass ratios, down to 1:6 and 1:10, enable us to meaningfully c ompare star formation rate (SFR) and BH accretion rate (BHAR) timescales, temporal behaviour and relative magnitude. We find that (i) BHAR and galaxy-wide SFR are typically temporally uncorrelated, and have different variability timescales, except during the merger proper, lasting ~0.2-0.3 Gyr. BHAR and nuclear (<100 pc) SFR are better correlated, and their variability are similar. Averaging over time, the merger phase leads typically to an increase by a factor of a few in the BHAR/SFR ratio. (ii) BHAR and nuclear SFR are intrinsically proportional, but the correlation lessens if the long-term SFR is measured. (iii) Galaxies in the remnant phase are the ones most likely to be selected as systems dominated by an active galactic nucleus (AGN), because of the long time spent in this phase. (iv) The timescale over which a given diagnostic probes the SFR has a profound impact on the recovered correlations with BHAR, and on the interpretation of observational data.
The majority of gravitational wave (GW) events detected so far by LIGO/Virgo originate from binary black hole (BBH) mergers. Among the different binary evolution paths, the merger of BBHs in accretion discs of active galactic nuclei (AGNs) is a possi ble source of GW detections. We consider an idealised analytical model of the orbital evolution of BBHs embedded in an AGN accretion disc. In this framework, the disc-binary interaction increases the orbital eccentricity and decreases the orbital separation, driving the BBH into a regime where GW emission eventually leads to coalescence. We compute the resulting GW merger rate density from this channel based on a weighted average of the merger timescales of a population of BBHs radially distributed within the AGN accretion disc. The predicted merger rates broadly lie in the range $mathcal{R} sim (0.002 - 18) , mathrm{Gpc^{-3} yr^{-1}}$. We analyse the dependence of the merger rate density on both the accretion disc and binary orbital parameters, emphasising the important role of the orbital eccentricity. We discuss the astrophysical implications of this particular BBH-in-AGN formation channel in the broader context of binary evolution scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا