ﻻ يوجد ملخص باللغة العربية
We theoretically investigate the Kondo effect of a T-shaped triple-quantum-dot structure, by means of the numerical renormalization group method. It is found that at the point of electron-hole symmetry, the systems entropy has opportunities to exhibit three kinds of transition processes for different interdot couplings, with the decrease of temperature. This leads to the different pictures of the Kondo physics, including the three-stage Kondo effect. Next when the electron-hole symmetry is broken or the structural parameters are changed, the Kondo resonance can also be observed in the conductance spectrum. However, it shows alternative dependence on the relevant quantities, i.e., the Coulomb interaction and interdot couplings. All these phenomena exhibit the abundant and interesting Kondo physics in this system. We believe that this work can be helpful for further understanding the Kondo effect in the triple-quantum-dot structures.
Numerical analysis of the simplest odd-numbered system of coupled quantum dots reveals an interplay between magnetic ordering, charge fluctuations and the tendency of itinerant electrons in the leads to screen magnetic moments. The transition from lo
The Kondo effect is a key many-body phenomenon in condensed matter physics. It concerns the interaction between a localised spin and free electrons. Discovered in metals containing small amounts of magnetic impurities, it is now a fundamental mechani
We report the observation of Kondo physics in a spin- 3/2 hole quantum dot. The dot is formed close to pinch-off in a hole quantum wire defined in an undoped AlGaAs/GaAs heterostructure. We clearly observe two distinctive hallmarks of quantum dot Kon
We review our recent studies on the Kondo effect in the tunneling phenomena through quantum dot systems. Numerical methods to calculate reliable tunneling conductance are developed. In the first place, a case in which electrons of odd number occupy t
The thermopower of a Kondo-correlated gate-defined quantum dot is studied using a current heating technique. In the presence of spin correlations the thermopower shows a clear deviation from the semiclassical Mott relation between thermopower and con