ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep geometric knowledge distillation with graphs

133   0   0.0 ( 0 )
 نشر من قبل Carlos Eduardo Rosar Kos Lassance
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In most cases deep learning architectures are trained disregarding the amount of operations and energy consumption. However, some applications, like embedded systems, can be resource-constrained during inference. A popular approach to reduce the size of a deep learning architecture consists in distilling knowledge from a bigger network (teacher) to a smaller one (student). Directly training the student to mimic the teacher representation can be effective, but it requires that both share the same latent space dimensions. In this work, we focus instead on relative knowledge distillation (RKD), which considers the geometry of the respective latent spaces, allowing for dimension-agnostic transfer of knowledge. Specifically we introduce a graph-based RKD method, in which graphs are used to capture the geometry of latent spaces. Using classical computer vision benchmarks, we demonstrate the ability of the proposed method to efficiently distillate knowledge from the teacher to the student, leading to better accuracy for the same budget as compared to existing RKD alternatives.

قيم البحث

اقرأ أيضاً

Knowledge distillation is a popular technique for training a small student network to emulate a larger teacher model, such as an ensemble of networks. We show that while knowledge distillation can improve student generalization, it does not typically work as it is commonly understood: there often remains a surprisingly large discrepancy between the predictive distributions of the teacher and the student, even in cases when the student has the capacity to perfectly match the teacher. We identify difficulties in optimization as a key reason for why the student is unable to match the teacher. We also show how the details of the dataset used for distillation play a role in how closely the student matches the teacher -- and that more closely matching the teacher paradoxically does not always lead to better student generalization.
We formally study how ensemble of deep learning models can improve test accuracy, and how the superior performance of ensemble can be distilled into a single model using knowledge distillation. We consider the challenging case where the ensemble is s imply an average of the outputs of a few independently trained neural networks with the SAME architecture, trained using the SAME algorithm on the SAME data set, and they only differ by the random seeds used in the initialization. We empirically show that ensemble/knowledge distillation in deep learning works very differently from traditional learning theory, especially differently from ensemble of random feature mappings or the neural-tangent-kernel feature mappings, and is potentially out of the scope of existing theorems. Thus, to properly understand ensemble and knowledge distillation in deep learning, we develop a theory showing that when data has a structure we refer to as multi-view, then ensemble of independently trained neural networks can provably improve test accuracy, and such superior test accuracy can also be provably distilled into a single model by training a single model to match the output of the ensemble instead of the true label. Our result sheds light on how ensemble works in deep learning in a way that is completely different from traditional theorems, and how the dark knowledge is hidden in the outputs of the ensemble -- that can be used in knowledge distillation -- comparing to the true data labels. In the end, we prove that self-distillation can also be viewed as implicitly combining ensemble and knowledge distillation to improve test accuracy.
In this paper, we present a general framework for distilling expectations with respect to the Bayesian posterior distribution of a deep neural network classifier, extending prior work on the Bayesian Dark Knowledge framework. The proposed framework t akes as input teacher and student model architectures and a general posterior expectation of interest. The distillation method performs an online compression of the selected posterior expectation using iteratively generated Monte Carlo samples. We focus on the posterior predictive distribution and expected entropy as distillation targets. We investigate several aspects of this framework including the impact of uncertainty and the choice of student model architecture. We study methods for student model architecture search from a speed-storage-accuracy perspective and evaluate down-stream tasks leveraging entropy distillation including uncertainty ranking and out-of-distribution detection.
Many recent works on knowledge distillation have provided ways to transfer the knowledge of a trained network for improving the learning process of a new one, but finding a good technique for knowledge distillation is still an open problem. In this p aper, we provide a new perspective based on a decision boundary, which is one of the most important component of a classifier. The generalization performance of a classifier is closely related to the adequacy of its decision boundary, so a good classifier bears a good decision boundary. Therefore, transferring information closely related to the decision boundary can be a good attempt for knowledge distillation. To realize this goal, we utilize an adversarial attack to discover samples supporting a decision boundary. Based on this idea, to transfer more accurate information about the decision boundary, the proposed algorithm trains a student classifier based on the adversarial samples supporting the decision boundary. Experiments show that the proposed method indeed improves knowledge distillation and achieves the state-of-the-arts performance.
82 - Zhen Han , Yunpu Ma , Yuyi Wang 2020
The Hawkes process has become a standard method for modeling self-exciting event sequences with different event types. A recent work has generalized the Hawkes process to a neurally self-modulating multivariate point process, which enables the captur ing of more complex and realistic impacts of past events on future events. However, this approach is limited by the number of possible event types, making it impossible to model the dynamics of evolving graph sequences, where each possible link between two nodes can be considered as an event type. The number of event types increases even further when links are directional and labeled. To address this issue, we propose the Graph Hawkes Neural Network that can capture the dynamics of evolving graph sequences and can predict the occurrence of a fact in a future time instance. Extensive experiments on large-scale temporal multi-relational databases, such as temporal knowledge graphs, demonstrate the effectiveness of our approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا