ترغب بنشر مسار تعليمي؟ اضغط هنا

On approximating the shape of one dimensional functions

274   0   0.0 ( 0 )
 نشر من قبل Chaitanya Joshi Dr.
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider an $s$-dimensional function being evaluated at $n$ points of a low discrepancy sequence (LDS), where the objective is to approximate the one-dimensional functions that result from integrating out $(s-1)$ variables. Here, the emphasis is on accurately approximating the shape of such emph{one-dimensional} functions. Approximating this shape when the function is evaluated on a set of grid points instead is relatively straightforward. However, the number of grid points needed increases exponentially with $s$. LDS are known to be increasingly more efficient at integrating $s$-dimensional functions compared to grids, as $s$ increases. Yet, a method to approximate the shape of a one-dimensional function when the function is evaluated using an $s$-dimensional LDS has not been proposed thus far. We propose an approximation method for this problem. This method is based on an $s$-dimensional integration rule together with fitting a polynomial smoothing function. We state and prove results showing conditions under which this polynomial smoothing function will converge to the true one-dimensional function. We also demonstrate the computational efficiency of the new approach compared to a grid based approach.

قيم البحث

اقرأ أيضاً

In contrast with classical Schwarz theory, recent results in computational chemistry have shown that for special domain geometries, the one-level parallel Schwarz method can be scalable. This property is not true in general, and the issue of quantify ing the lack of scalability remains an open problem. Even though heuristic explanations are given in the literature, a rigorous and systematic analysis is still missing. In this short manuscript, we provide a first rigorous result that precisely quantifies the lack of scalability of the classical one-level parallel Schwarz method for the solution to the one-dimensional Laplace equation. Our analysis technique provides a possible roadmap for a systematic extension to more realistic problems in higher dimensions.
We propose a model reduction procedure for rapid and reliable solution of parameterized hyperbolic partial differential equations. Due to the presence of parameter-dependent shock waves and contact discontinuities, these problems are extremely challe nging for traditional model reduction approaches based on linear approximation spaces. The main ingredients of the proposed approach are (i) an adaptive space-time registration-based data compression procedure to align local features in a fixed reference domain, (ii) a space-time Petrov-Galerkin (minimum residual) formulation for the computation of the mapped solution, and (iii) a hyper-reduction procedure to speed up online computations. We present numerical results for a Burgers model problem and a shallow water model problem, to empirically demonstrate the potential of the method.
Spectral computations of infinite-dimensional operators are notoriously difficult, yet ubiquitous in the sciences. Indeed, despite more than half a century of research, it is still unknown which classes of operators allow for computation of spectra a nd eigenvectors with convergence rates and error control. Recent progress in classifying the difficulty of spectral problems into complexity hierarchies has revealed that the most difficult spectral problems are so hard that one needs three limits in the computation, and no convergence rates nor error control is possible. This begs the question: which classes of operators allow for computations with convergence rates and error control? In this paper we address this basic question, and the algorithm used is an infinite-dimensional version of the QR algorithm. Indeed, we generalise the QR algorithm to infinite-dimensional operators. We prove that not only is the algorithm executable on a finite machine, but one can also recover the extremal parts of the spectrum and corresponding eigenvectors, with convergence rates and error control. This allows for new classification results in the hierarchy of computational problems that existing algorithms have not been able to capture. The algorithm and convergence theorems are demonstrated on a wealth of examples with comparisons to standard approaches (that are notorious for providing false solutions).We also find that in some cases the IQR algorithm performs better than predicted by theory and make conjectures for future study.
In the error analysis of finite element methods, the shape regularity assumption on triangulations is typically imposed to obtain a priori error estimations. In practical computations, however, very thin or degenerated elements that violate the shape regularity assumption may appear when we use adaptive mesh refinement. In this manuscript, we attempt to establish an error analysis approach without the shape regularity assumption on triangulations. We have presented several papers on the error analysis of finite element methods on non-shape regular triangulations. The main points in these papers are that, in the error estimates of finite element methods, the circumradius of the triangles is one of the most important factors. The purpose of this manuscript is to provide a simple and plain explanation of the results to researchers and, in particular, graduate students who are interested in the subject. Therefore, this manuscript is not intended to be a research paper. We hope that, in the future, it will be merged into a textbook on the mathematical theory of the finite element methods.
This is the second lecture note on the error analysis of interpolation on simplicial elements without the shape regularity assumption (the previous one is arXiv:1908.03894). In this manuscript, we explain the error analysis of Lagrange interpolation on (possibly anisotropic) tetrahedrons. The manuscript is not intended to be a research paper. We hope that, in the future, it will be merged into a textbook on the mathematical theory of the finite element methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا