ﻻ يوجد ملخص باللغة العربية
In the error analysis of finite element methods, the shape regularity assumption on triangulations is typically imposed to obtain a priori error estimations. In practical computations, however, very thin or degenerated elements that violate the shape regularity assumption may appear when we use adaptive mesh refinement. In this manuscript, we attempt to establish an error analysis approach without the shape regularity assumption on triangulations. We have presented several papers on the error analysis of finite element methods on non-shape regular triangulations. The main points in these papers are that, in the error estimates of finite element methods, the circumradius of the triangles is one of the most important factors. The purpose of this manuscript is to provide a simple and plain explanation of the results to researchers and, in particular, graduate students who are interested in the subject. Therefore, this manuscript is not intended to be a research paper. We hope that, in the future, it will be merged into a textbook on the mathematical theory of the finite element methods.
This is the second lecture note on the error analysis of interpolation on simplicial elements without the shape regularity assumption (the previous one is arXiv:1908.03894). In this manuscript, we explain the error analysis of Lagrange interpolation
This paper describes the analysis of Lagrange interpolation errors on tetrahedrons. In many textbooks, the error analysis of Lagrange interpolation is conducted under geometric assumptions such as shape regularity or the (generalized) maximum angle c
We present the error analysis of Lagrange interpolation on triangles. A new textit{a priori} error estimate is derived in which the bound is expressed in terms of the diameter and circumradius of a triangle. No geometric conditions on triangles are i
We present a general theory of interpolation error estimates for smooth functions and inverse inequalities on anisotropic meshes. In our theory, the error of interpolation is bound in terms of the diameter of a simplex and a geometric parameter. In t
We propose a general theory of estimating interpolation error for smooth functions in two and three dimensions. In our theory, the error of interpolation is bound in terms of the diameter of a simplex and a geometric parameter. In the two-dimensional