ﻻ يوجد ملخص باللغة العربية
Reinforcement learning is showing great potentials in robotics applications, including autonomous driving, robot manipulation and locomotion. However, with complex uncertainties in the real-world environment, it is difficult to guarantee the successful generalization and sim-to-real transfer of learned policies theoretically. In this paper, we introduce and extend the idea of robust stability and $H_infty$ control to design policies with both stability and robustness guarantee. Specifically, a sample-based approach for analyzing the Lyapunov stability and performance robustness of a learning-based control system is proposed. Based on the theoretical results, a maximum entropy algorithm is developed for searching Lyapunov function and designing a policy with provable robust stability guarantee. Without any specific domain knowledge, our method can find a policy that is robust to various uncertainties and generalizes well to different test environments. In our experiments, we show that our method achieves better robustness to both large impulsive disturbances and parametric variations in the environment than the state-of-art results in both robust and generic RL, as well as classic control. Anonymous code is available to reproduce the experimental results at https://github.com/RobustStabilityGuaranteeRL/RobustStabilityGuaranteeRL.
Reinforcement Learning (RL) and its integration with deep learning have achieved impressive performance in various robotic control tasks, ranging from motion planning and navigation to end-to-end visual manipulation. However, stability is not guarant
We propose a model-free algorithm for learning efficient policies capable of returning table tennis balls by controlling robot joints at a rate of 100Hz. We demonstrate that evolutionary search (ES) methods acting on CNN-based policy architectures fo
Although deep reinforcement learning (deep RL) methods have lots of strengths that are favorable if applied to autonomous driving, real deep RL applications in autonomous driving have been slowed down by the modeling gap between the source (training)
Safety is essential for reinforcement learning (RL) applied in the real world. Adding chance constraints (or probabilistic constraints) is a suitable way to enhance RL safety under uncertainty. Existing chance-constrained RL methods like the penalty
While conventional reinforcement learning focuses on designing agents that can perform one task, meta-learning aims, instead, to solve the problem of designing agents that can generalize to different tasks (e.g., environments, obstacles, and goals) t