ﻻ يوجد ملخص باللغة العربية
There has been huge interest in studying human brain connectomes inferred from different imaging modalities and exploring their relationship with human traits, such as cognition. Brain connectomes are usually represented as networks, with nodes corresponding to different regions of interest (ROIs) and edges to connection strengths between ROIs. Due to the high-dimensionality and non-Euclidean nature of networks, it is challenging to depict their population distribution and relate them to human traits. Current approaches focus on summarizing the network using either pre-specified topological features or principal components analysis (PCA). In this paper, building on recent advances in deep learning, we develop a nonlinear latent factor model to characterize the population distribution of brain graphs and infer the relationships between brain structural connectomes and human traits. We refer to our method as Graph AuTo-Encoding (GATE). We applied GATE to two large-scale brain imaging datasets, the Adolescent Brain Cognitive Development (ABCD) study and the Human Connectome Project (HCP) for adults, to understand the structural brain connectome and its relationship with cognition. Numerical results demonstrate huge advantages of GATE over competitors in terms of prediction accuracy, statistical inference and computing efficiency. We found that structural connectomes have a stronger association with a wide range of human cognitive traits than was apparent using previous approaches.
As deep learning is showing unprecedented success in medical image analysis tasks, the lack of sufficient medical data is emerging as a critical problem. While recent attempts to solve the limited data problem using Generative Adversarial Networks (G
We analyze the complex networks associated with brain electrical activity. Multichannel EEG measurements are first processed to obtain 3D voxel activations using the tomographic algorithm LORETA. Then, the correlation of the current intensity activat
This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light
Almost all statistical and machine learning methods in analyzing brain networks rely on distances and loss functions, which are mostly Euclidean or matrix norms. The Euclidean or matrix distances may fail to capture underlying subtle topological diff
Reconstructing multiple molecularly defined neurons from individual brains and across multiple brain regions can reveal organizational principles of the nervous system. However, high resolution imaging of the whole brain is a technically challenging