ﻻ يوجد ملخص باللغة العربية
The Roper state is extracted with valence overlap fermions on a $2+1$-flavor domain-wall fermion lattice (spacing $a = 0.114$ fm and $m_{pi} = 330$ MeV) using both the Sequential Empirical Bayes (SEB) method and the variational method. The results are consistent, provided that a large smearing-size interpolation operator is included in the variational calculation to have better overlap with the lowest radial excitation. Similar calculations carried out for an anisotropic clover lattice with similar parameters find the Roper $approx 280$ MeV higher than that of the overlap fermion. The fact that the prediction of the Roper state by overlap fermions is consistently lower than those of clover fermions, chirally improved fermions, and twisted-mass fermions over a wide range of pion masses has been dubbed a Roper puzzle. To understand the origin of this difference, we study the hairpin $Z$-diagram in the isovector scalar meson ($a_0$) correlator in the quenched approximation. Comparing the $a_0$ correlators for clover and overlap fermions, at a pion mass of 290 MeV, we find that the spectral weight of the ghost state with clover fermions is smaller than that of the overlap at $a = 0.12$ fm and $0.09$ fm, whereas the whole $a_0$ correlators of clover and overlap at $a = 0.06$ fm coincide within errors. This suggests that chiral symmetry is restored for clover at $a le 0.06$ fm and that the Roper should come down at and below this $a$. We conclude that this work supports a resolution of the Roper puzzle due to $Z$-graph type chiral dynamics. This entails coupling to higher components in the Fock space (e.g. $Npi$, $Npipi$ states) to induce the effective flavor-spin interaction between quarks as prescribed in the chiral quark model, resulting in the parity-reversal pattern as observed in the experimental excited states of $N, Delta$ and $Lambda$.
We present a calculation of the strangeness and charmness contents <N|bar{s}s|N> and <N|bar{c}c|N> of the nucleon from dynamical lattice QCD with 2+1 flavors. The calculation is performed with overlap valence quarks on 2+1-flavor domain-wall fermion
The charmed-strange meson spectrum is calculated with the overlap valence fermions on 2+1 flavor domain wall dynamical configurations for $32^3times 64$ lattices with a spatial size of 2.7 fm. Both charm and strange quark propagators are calculated w
We study the finite temperature localization transition in the spectrum of the overlap Dirac operator. Simulating the quenched approximation of QCD, we calculate the mobility edge, separating localized and delocalized modes in the spectrum. We do thi
We study in a nonperturbative fashion the thermodynamics of a unitary Fermi gas over a wide range of temperatures and spin polarizations. To this end, we use the complex Langevin method, a first principles approach for strongly coupled systems. Speci
A simple probabilistic cellular automaton is shown to be equivalent to a relativistic fermionic quantum field theory with interactions. Occupation numbers for fermions are classical bits or Ising spins. The automaton acts deterministically on bit con