ترغب بنشر مسار تعليمي؟ اضغط هنا

SCL: Towards Accurate Domain Adaptive Object Detection via Gradient Detach Based Stacked Complementary Losses

65   0   0.0 ( 0 )
 نشر من قبل Zhiqiang Shen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised domain adaptive object detection aims to learn a robust detector in the domain shift circumstance, where the training (source) domain is label-rich with bounding box annotations, while the testing (target) domain is label-agnostic and the feature distributions between training and testing domains are dissimilar or even totally different. In this paper, we propose a gradient detach based stacked complementary losses (SCL) method that uses detection losses as the primary objective, and cuts in several auxiliary losses in different network stages accompanying with gradient detach training to learn more discriminative representations. We argue that the prior methods mainly leverage more loss functions for training but ignore the interaction of different losses and also the compatible training strategy (gradient detach updating in our work). Thus, our proposed method is a more syncretic adaptation learning process. We conduct comprehensive experiments on seven datasets, the results demonstrate that our method performs favorably better than the state-of-the-art methods by a significant margin. For instance, from Cityscapes to FoggyCityscapes, we achieve 37.9% mAP, outperforming the previous art Strong-Weak by 3.6%.



قيم البحث

اقرأ أيضاً

Data augmentation has become a de facto component for training high-performance deep image classifiers, but its potential is under-explored for object detection. Noting that most state-of-the-art object detectors benefit from fine-tuning a pre-traine d classifier, we first study how the classifiers gains from various data augmentations transfer to object detection. The results are discouraging; the gains diminish after fine-tuning in terms of either accuracy or robustness. This work instead augments the fine-tuning stage for object detectors by exploring adversarial examples, which can be viewed as a model-dependent data augmentation. Our method dynamically selects the stronger adversarial images sourced from a detectors classification and localization branches and evolves with the detector to ensure the augmentation policy stays current and relevant. This model-dependent augmentation generalizes to different object detectors better than AutoAugment, a model-agnostic augmentation policy searched based on one particular detector. Our approach boosts the performance of state-of-the-art EfficientDets by +1.1 mAP on the COCO object detection benchmark. It also improves the detectors robustness against natural distortions by +3.8 mAP and against domain shift by +1.3 mAP. Models are available at https://github.com/google/automl/tree/master/efficientdet/Det-AdvProp.md
Most state-of-the-art methods of object detection suffer from poor generalization ability when the training and test data are from different domains, e.g., with different styles. To address this problem, previous methods mainly use holistic represent ations to align feature-level and pixel-level distributions of different domains, which may neglect the instance-level characteristics of objects in images. Besides, when transferring detection ability across different domains, it is important to obtain the instance-level features that are domain-invariant, instead of the styles that are domain-specific. Therefore, in order to extract instance-invariant features, we should disentangle the domain-invariant features from the domain-specific features. To this end, a progressive disentangled framework is first proposed to solve domain adaptive object detection. Particularly, base on disentangled learning used for feature decomposition, we devise two disentangled layers to decompose domain-invariant and domain-specific features. And the instance-invariant features are extracted based on the domain-invariant features. Finally, to enhance the disentanglement, a three-stage training mechanism including multiple loss functions is devised to optimize our model. In the experiment, we verify the effectiveness of our method on three domain-shift scenes. Our method is separately 2.3%, 3.6%, and 4.0% higher than the baseline method cite{saito2019strong}.
Recurrent neural networks are known for their notorious exploding and vanishing gradient problem (EVGP). This problem becomes more evident in tasks where the information needed to correctly solve them exist over long time scales, because EVGP prevent s important gradient components from being back-propagated adequately over a large number of steps. We introduce a simple stochastic algorithm (textit{h}-detach) that is specific to LSTM optimization and targeted towards addressing this problem. Specifically, we show that when the LSTM weights are large, the gradient components through the linear path (cell state) in the LSTM computational graph get suppressed. Based on the hypothesis that these components carry information about long term dependencies (which we show empirically), their suppression can prevent LSTMs from capturing them. Our algorithmfootnote{Our code is available at https://github.com/bhargav104/h-detach.} prevents gradients flowing through this path from getting suppressed, thus allowing the LSTM to capture such dependencies better. We show significant improvements over vanilla LSTM gradient based training in terms of convergence speed, robustness to seed and learning rate, and generalization using our modification of LSTM gradient on various benchmark datasets.
83 - Wanyi Li , Fuyu Li , Yongkang Luo 2020
Deep learning (DL) based object detection has achieved great progress. These methods typically assume that large amount of labeled training data is available, and training and test data are drawn from an identical distribution. However, the two assum ptions are not always hold in practice. Deep domain adaptive object detection (DDAOD) has emerged as a new learning paradigm to address the above mentioned challenges. This paper aims to review the state-of-the-art progress on deep domain adaptive object detection approaches. Firstly, we introduce briefly the basic concepts of deep domain adaptation. Secondly, the deep domain adaptive detectors are classified into five categories and detailed descriptions of representative methods in each category are provided. Finally, insights for future research trend are presented.
391 - Yu Wang , Rui Zhang , Shuo Zhang 2021
Domain adaptation methods face performance degradation in object detection, as the complexity of tasks require more about the transferability of the model. We propose a new perspective on how CNN models gain the transferability, viewing the weights o f a model as a series of motion patterns. The directions of weights, and the gradients, can be divided into domain-specific and domain-invariant parts, and the goal of domain adaptation is to concentrate on the domain-invariant direction while eliminating the disturbance from domain-specific one. Current UDA object detection methods view the two directions as a whole while optimizing, which will cause domain-invariant direction mismatch even if the output features are perfectly aligned. In this paper, we propose the domain-specific suppression, an exemplary and generalizable constraint to the original convolution gradients in backpropagation to detach the two parts of directions and suppress the domain-specific one. We further validate our theoretical analysis and methods on several domain adaptive object detection tasks, including weather, camera configuration, and synthetic to real-world adaptation. Our experiment results show significant advance over the state-of-the-art methods in the UDA object detection field, performing a promotion of $10.2sim12.2%$ mAP on all these domain adaptation scenarios.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا