ﻻ يوجد ملخص باللغة العربية
Unsupervised domain adaptive object detection aims to learn a robust detector in the domain shift circumstance, where the training (source) domain is label-rich with bounding box annotations, while the testing (target) domain is label-agnostic and the feature distributions between training and testing domains are dissimilar or even totally different. In this paper, we propose a gradient detach based stacked complementary losses (SCL) method that uses detection losses as the primary objective, and cuts in several auxiliary losses in different network stages accompanying with gradient detach training to learn more discriminative representations. We argue that the prior methods mainly leverage more loss functions for training but ignore the interaction of different losses and also the compatible training strategy (gradient detach updating in our work). Thus, our proposed method is a more syncretic adaptation learning process. We conduct comprehensive experiments on seven datasets, the results demonstrate that our method performs favorably better than the state-of-the-art methods by a significant margin. For instance, from Cityscapes to FoggyCityscapes, we achieve 37.9% mAP, outperforming the previous art Strong-Weak by 3.6%.
Data augmentation has become a de facto component for training high-performance deep image classifiers, but its potential is under-explored for object detection. Noting that most state-of-the-art object detectors benefit from fine-tuning a pre-traine
Most state-of-the-art methods of object detection suffer from poor generalization ability when the training and test data are from different domains, e.g., with different styles. To address this problem, previous methods mainly use holistic represent
Recurrent neural networks are known for their notorious exploding and vanishing gradient problem (EVGP). This problem becomes more evident in tasks where the information needed to correctly solve them exist over long time scales, because EVGP prevent
Deep learning (DL) based object detection has achieved great progress. These methods typically assume that large amount of labeled training data is available, and training and test data are drawn from an identical distribution. However, the two assum
Domain adaptation methods face performance degradation in object detection, as the complexity of tasks require more about the transferability of the model. We propose a new perspective on how CNN models gain the transferability, viewing the weights o