ترغب بنشر مسار تعليمي؟ اضغط هنا

Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods

135   0   0.0 ( 0 )
 نشر من قبل Dylan Slack
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As machine learning black boxes are increasingly being deployed in domains such as healthcare and criminal justice, there is growing emphasis on building tools and techniques for explaining these black boxes in an interpretable manner. Such explanations are being leveraged by domain experts to diagnose systematic errors and underlying biases of black boxes. In this paper, we demonstrate that post hoc explanations techniques that rely on input perturbations, such as LIME and SHAP, are not reliable. Specifically, we propose a novel scaffolding technique that effectively hides the biases of any given classifier by allowing an adversarial entity to craft an arbitrary desired explanation. Our approach can be used to scaffold any biased classifier in such a way that its predictions on the input data distribution still remain biased, but the post hoc explanations of the scaffolded classifier look innocuous. Using extensive evaluation with multiple real-world datasets (including COMPAS), we demonstrate how extremely biased (racist) classifiers crafted by our framework can easily fool popular explanation techniques such as LIME and SHAP into generating innocuous explanations which do not reflect the underlying biases.

قيم البحث

اقرأ أيضاً

We address the problem of uncertainty calibration. While standard deep neural networks typically yield uncalibrated predictions, calibrated confidence scores that are representative of the true likelihood of a prediction can be achieved using post-ho c calibration methods. However, to date the focus of these approaches has been on in-domain calibration. Our contribution is two-fold. First, we show that existing post-hoc calibration methods yield highly over-confident predictions under domain shift. Second, we introduce a simple strategy where perturbations are applied to samples in the validation set before performing the post-hoc calibration step. In extensive experiments, we demonstrate that this perturbation step results in substantially better calibration under domain shift on a wide range of architectures and modelling tasks.
Calibration of neural networks is a critical aspect to consider when incorporating machine learning models in real-world decision-making systems where the confidence of decisions are equally important as the decisions themselves. In recent years, the re is a surge of research on neural network calibration and the majority of the works can be categorized into post-hoc calibration methods, defined as methods that learn an additional function to calibrate an already trained base network. In this work, we intend to understand the post-hoc calibration methods from a theoretical point of view. Especially, it is known that minimizing Negative Log-Likelihood (NLL) will lead to a calibrated network on the training set if the global optimum is attained (Bishop, 1994). Nevertheless, it is not clear learning an additional function in a post-hoc manner would lead to calibration in the theoretical sense. To this end, we prove that even though the base network ($f$) does not lead to the global optimum of NLL, by adding additional layers ($g$) and minimizing NLL by optimizing the parameters of $g$ one can obtain a calibrated network $g circ f$. This not only provides a less stringent condition to obtain a calibrated network but also provides a theoretical justification of post-hoc calibration methods. Our experiments on various image classification benchmarks confirm the theory.
An increasing number of machine learning models have been deployed in domains with high stakes such as finance and healthcare. Despite their superior performances, many models are black boxes in nature which are hard to explain. There are growing eff orts for researchers to develop methods to interpret these black-box models. Post hoc explanations based on perturbations, such as LIME, are widely used approaches to interpret a machine learning model after it has been built. This class of methods has been shown to exhibit large instability, posing serious challenges to the effectiveness of the method itself and harming user trust. In this paper, we propose S-LIME, which utilizes a hypothesis testing framework based on central limit theorem for determining the number of perturbation points needed to guarantee stability of the resulting explanation. Experiments on both simulated and real world data sets are provided to demonstrate the effectiveness of our method.
The ability to understand and trust the fairness of model predictions, particularly when considering the outcomes of unprivileged groups, is critical to the deployment and adoption of machine learning systems. SHAP values provide a unified framework for interpreting model predictions and feature attribution but do not address the problem of fairness directly. In this work, we propose a new definition of fairness that emphasises the role of an external auditor and model explicability. To satisfy this definition, we develop a framework for mitigating model bias using regularizations constructed from the SHAP values of an adversarial surrogate model. We focus on the binary classification task with a single unprivileged group and link our fairness explicability constraints to classical statistical fairness metrics. We demonstrate our approaches using gradient and adaptive boosting on: a synthetic dataset, the UCI Adult (Census) dataset and a real-world credit scoring dataset. The models produced were fairer and performant.
There has been an ongoing cycle where stronger defenses against adversarial attacks are subsequently broken by a more advanced defense-aware attack. We present a new approach towards ending this cycle where we deflect adversarial attacks by causing t he attacker to produce an input that semantically resembles the attacks target class. To this end, we first propose a stronger defense based on Capsule Networks that combines three detection mechanisms to achieve state-of-the-art detection performance on both standard and defense-aware attacks. We then show that undetected attacks against our defense often perceptually resemble the adversarial target class by performing a human study where participants are asked to label images produced by the attack. These attack images can no longer be called adversarial because our network classifies them the same way as humans do.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا