ترغب بنشر مسار تعليمي؟ اضغط هنا

A Programmable Approach to Neural Network Compression

92   0   0.0 ( 0 )
 نشر من قبل Vinu Joseph
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural networks (DNNs) frequently contain far more weights, represented at a higher precision, than are required for the specific task which they are trained to perform. Consequently, they can often be compressed using techniques such as weight pruning and quantization that reduce both the model size and inference time without appreciable loss in accuracy. However, finding the best compression strategy and corresponding target sparsity for a given DNN, hardware platform, and optimization objective currently requires expensive, frequently manual, trial-and-error experimentation. In this paper, we introduce a programmable system for model compression called Condensa. Users programmatically compose simple operators, in Python, to build more complex and practically interesting compression strategies. Given a strategy and user-provided objective (such as minimization of running time), Condensa uses a novel Bayesian optimization-based algorithm to automatically infer desirable sparsities. Our experiments on four real-world DNNs demonstrate memory footprint and hardware runtime throughput improvements of 188x and 2.59x, respectively, using at most ten samples per search. We have released a reference implementation of Condensa at https://github.com/NVlabs/condensa.



قيم البحث

اقرأ أيضاً

106 - Tianyi Chen , Bo Ji , Yixin Shi 2020
The compression of deep neural networks (DNNs) to reduce inference cost becomes increasingly important to meet realistic deployment requirements of various applications. There have been a significant amount of work regarding network compression, whil e most of them are heuristic rule-based or typically not friendly to be incorporated into varying scenarios. On the other hand, sparse optimization yielding sparse solutions naturally fits the compression requirement, but due to the limited study of sparse optimization in stochastic learning, its extension and application onto model compression is rarely well explored. In this work, we propose a model compression framework based on the recent progress on sparse stochastic optimization. Compared to existing model compression techniques, our method is effective and requires fewer extra engineering efforts to incorporate with varying applications, and has been numerically demonstrated on benchmark compression tasks. Particularly, we achieve up to 7.2 and 2.9 times FLOPs reduction with the same level of evaluation accuracy on VGG16 for CIFAR10 and ResNet50 for ImageNet compared to the baseline heavy models, respectively.
Normalization is known to help the optimization of deep neural networks. Curiously, different architectures require specialized normalization methods. In this paper, we study what normalization is effective for Graph Neural Networks (GNNs). First, we adapt and evaluate the existing methods from other domains to GNNs. Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm serves as a preconditioner for GNNs, but such preconditioning effect is weaker with BatchNorm due to the heavy batch noise in graph datasets. Second, we show that the shift operation in InstanceNorm results in an expressiveness degradation of GNNs for highly regular graphs. We address this issue by proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm converge faster compared to GNNs using other normalization. GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.
Deep Neural Networks (DNNs) are applied in a wide range of usecases. There is an increased demand for deploying DNNs on devices that do not have abundant resources such as memory and computation units. Recently, network compression through a variety of techniques such as pruning and quantization have been proposed to reduce the resource requirement. A key parameter that all existing compression techniques are sensitive to is the compression ratio (e.g., pruning sparsity, quantization bitwidth) of each layer. Traditional solutions treat the compression ratios of each layer as hyper-parameters, and tune them using human heuristic. Recent researchers start using black-box hyper-parameter optimizations, but they will introduce new hyper-parameters and have efficiency issue. In this paper, we propose a framework to jointly prune and quantize the DNNs automatically according to a target model size without using any hyper-parameters to manually set the compression ratio for each layer. In the experiments, we show that our framework can compress the weights data of ResNet-50 to be 836$times$ smaller without accuracy loss on CIFAR-10, and compress AlexNet to be 205$times$ smaller without accuracy loss on ImageNet classification.
Deep neural networks (DNNs) have become the state-of-the-art technique for machine learning tasks in various applications. However, due to their size and the computational complexity, large DNNs are not readily deployable on edge devices in real-time . To manage complexity and accelerate computation, network compression techniques based on pruning and quantization have been proposed and shown to be effective in reducing network size. However, such network compression can result in irregular matrix structures that are mismatched with modern hardware-accelerated platforms, such as graphics processing units (GPUs) designed to perform the DNN matrix multiplications in a structured (block-based) way. We propose MPDCompress, a DNN compression algorithm based on matrix permutation decomposition via random mask generation. In-training application of the masks molds the synaptic weight connection matrix to a sub-graph separation format. Aided by the random permutations, a hardware-desirable block matrix is generated, allowing for a more efficient implementation and compression of the network. To show versatility, we empirically verify MPDCompress on several network models, compression rates, and image datasets. On the LeNet 300-100 model (MNIST dataset), Deep MNIST, and CIFAR10, we achieve 10 X network compression with less than 1% accuracy loss compared to non-compressed accuracy performance. On AlexNet for the full ImageNet ILSVRC-2012 dataset, we achieve 8 X network compression with less than 1% accuracy loss, with top-5 and top-1 accuracies of 79.6% and 56.4%, respectively. Finally, we observe that the algorithm can offer inference speedups across various hardware platforms, with 4 X faster operation achieved on several mobile GPUs.
Structural pruning of neural network parameters reduces computation, energy, and memory transfer costs during inference. We propose a novel method that estimates the contribution of a neuron (filter) to the final loss and iteratively removes those wi th smaller scores. We describe two variations of our method using the first and second-order Taylor expansions to approximate a filters contribution. Both methods scale consistently across any network layer without requiring per-layer sensitivity analysis and can be applied to any kind of layer, including skip connections. For modern networks trained on ImageNet, we measured experimentally a high (>93%) correlation between the contribution computed by our methods and a reliable estimate of the true importance. Pruning with the proposed methods leads to an improvement over state-of-the-art in terms of accuracy, FLOPs, and parameter reduction. On ResNet-101, we achieve a 40% FLOPS reduction by removing 30% of the parameters, with a loss of 0.02% in the top-1 accuracy on ImageNet. Code is available at https://github.com/NVlabs/Taylor_pruning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا