ﻻ يوجد ملخص باللغة العربية
In this note we continue giving the characterisation of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are given in the integral form in the spirit of Hardys original inequality. This is a continuation of our paper [M. Ruzhansky and D. Verma. Hardy inequalities on metric measure spaces, Proc. R. Soc. A., 475(2223):20180310, 2018] where we treated the case $pleq q$. Here the remaining range $p>q$ is considered, namely, $0<q<p$, $1<p<infty.$ We give examples obtaining new weighted Hardy inequalities on $mathbb R^n$, on homogeneous groups, on hyperbolic spaces, and on Cartan-Hadamard manifolds. We note that doubling conditions are not required for our analysis.
In this note we give several characterisations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are
We find sharp conditions on the growth of a rooted regular metric tree such that the Neumann Laplacian on the tree satisfies a Hardy inequality. In particular, we consider homogeneous metric trees. Moreover, we show that a non-trivial Aharonov-Bohm m
This is a continuation of the papers [Kuryakov-Sukochev, JFA, 2015] and [Sadovskaya-Sukochev, PAMS, 2018], in which the isomorphic classification of $L_{p,q}$, for $1< p<infty$, $1le q<infty$, $p e q $, on resonant measure spaces, has been obtained.
We consider the inequalities of Gagliardo-Nirenberg and Sobolev in R^d, formulated in terms of the Laplacian Delta and of the fractional powers D^n := (-Delta)^(n/2) with real n >= 0; we review known facts and present novel results in this area. Afte
In this paper we derive a variety of functional inequalities for general homogeneous invariant hypoelliptic differential operators on nilpotent Lie groups. The obtained inequalities include Hardy, Rellich, Hardy-Littllewood-Sobolev, Galiardo-Nirenber