ترغب بنشر مسار تعليمي؟ اضغط هنا

High spin mixing conductance and spin interface transparency at $Co_2Fe_{0.4}Mn_{0.6}Si$ Heusler alloy and Pt interface

55   0   0.0 ( 0 )
 نشر من قبل Subhankar Bedanta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ferromagnetic materials exhibiting low magnetic damping ($alpha$) and moderately high saturation magnetization are required from the viewpoints of generation, transmission and detection of spin wave. Since spin-to-charge conversion efficiency is another important parameter, high spin mixing conductance ($g_{r}^{uparrow downarrow}$) is the key for efficient spin-to-charge conversion. Full Heusler alloys e.g. $Co_2Fe_{0.4}Mn_{0.6}Si$ (CFMS), which are predicted to be 100$%$ spin polarized, possess low $alpha$. However, the $g_{r}^{uparrow downarrow}$ at the interface between CFMS and a paramagnet has not fully been understood. Here, we report the investigations of spin pumping and inverse spin Hall effect in $CFMS/Pt$ bilayers. Damping analysis indicates the presence of significant spin pumping at the interface of CFMS and Pt, which is also confirmed by the detection of inverse spin Hall voltage. We show that in CFMS/Pt the $g_{r}^{uparrow downarrow}$ (1.77$times$10$^{20}$m$^{-2}$) and interface transparency (84$%$) are higher compared to values reported for other ferromagnet/heavy metal systems.


قيم البحث

اقرأ أيضاً

105 - Z. Qiu , K. Ando , K. Uchida 2013
A platinum (Pt)/yttrium iron garnet (YIG) bilayer system with a well-controlled interface has been developed; spin mixing conductance at the Pt/YIG interface has been studied. Crystal perfection at the interface is experimentally demonstrated to cont ribute to large spin mixing conductance. The spin mixing conductance is obtained to be $1.3times10^{18} rm{m^{-2}}$ at the well-controlled Pt/YIG interface, which is close to a theoretical prediction.
In this paper, we investigate CoFeCrAl alloy by means of various experimental techniques and ab-initio calculations to look for half-metallic nature. The alloy is found to exist in the cubic Heusler structure, with presence of B2 ordering. Saturation magnetization (MS) value of about 2 Bohr magneton/f.u. is observed at 8 K under ambient pressure, which is in good agreement with the Slater-Pauling rule. MS values are found to be independent of pressure, which is a prerequisite for half-metals. The ab-initio electronic structure calculations predict half-metallic nature for the alloy with a spin slitting energy of 0.31 eV. Importantly, this system shows a high current spin polarization value of 0.67 [with error of 0.02], as deduced from the point contact Andreev reflection (PCAR) measurements. Linear dependence of electrical resistivity with temperature indicates the possibility of reasonably high spin polarization at elevated temperatures (~150 K) as well. All these suggest that CoFeCrAl is a promising material for the spintronic devices.
We report the structure, magnetic property and spin polarization of CoFeMnGe equiatomic quaternary Heusler alloy. The alloy was found to exist in the L21 structure with considerable amount of DO3 disorder. Thermal analysis result indicated the Curie temperature is about 711K without any other phase transformation up to melting temperature. The magnetization value was close to that predicted by the Slater-Pauling curve. Current spin polarization of P = 0.70 {plus/minus}0.1 was deduced using point contact Andreev reflection (PCAR) measurements. Half-metallic trend in the resistivity has also been observed in the temperature range of 5 K to 300 K. Considering the high spin polarization and Curie temperature, this material appears to be promising for spintronic applications.
201 - Yuan Xu , Xi Mi , Y. Z. Wu 2007
The spin dependent reflection at the interface is the key element to understand the spin transport. By completely solving the scattering problem based on first principles method, we obtained the spin resolved reflectivity spectra. The comparison of o ur theoretical results with experiment is good in a large energy scale from Fermi level to energy above vacuum level. It is found that interfacial distortion is crucial for understanding the spin dependence of the phase gain at the Cu$|$Co interface. Near the Fermi level, image state plays an important role to the phase accumulation in the copper film.
We report the observation of efficient charge-to-spin conversion in the three-dimensional topological insulator (TI) Bi2Se3 and Ag bilayer by the spin-torque ferromagnetic resonance technique. The spin orbit torque ratio in the Bi2Se3/Ag/CoFeB hetero structure shows a significant enhancement as the Ag thickness increases to ~2 nm and reaches a value of 0.5 for 5 nm Ag, which is ~3 times higher than that of Bi2Se3/CoFeB at room temperature. The observation reveals the interfacial effect of Bi2Se3/Ag exceeds that of the topological surface states (TSS) in the Bi2Se3 layer and plays a dominant role in the charge-to-spin conversion in the Bi2Se3/Ag/CoFeB system. Based on the first-principles calculations, we attribute our observation to the large Rashba-splitting bands which wrap the TSS band and has the same net spin polarization direction as TSS of Bi2Se3. Subsequently, we demonstrate for the first time the Rashba induced magnetization switching in Bi2Se3/Ag/Py with a low current density of 5.8 X 10^5 A/cm2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا