ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Charge-Spin Conversion and Magnetization Switching though Rashba Effect at Topological Insulator/Ag Interface

93   0   0.0 ( 0 )
 نشر من قبل Shuyuan Shi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of efficient charge-to-spin conversion in the three-dimensional topological insulator (TI) Bi2Se3 and Ag bilayer by the spin-torque ferromagnetic resonance technique. The spin orbit torque ratio in the Bi2Se3/Ag/CoFeB heterostructure shows a significant enhancement as the Ag thickness increases to ~2 nm and reaches a value of 0.5 for 5 nm Ag, which is ~3 times higher than that of Bi2Se3/CoFeB at room temperature. The observation reveals the interfacial effect of Bi2Se3/Ag exceeds that of the topological surface states (TSS) in the Bi2Se3 layer and plays a dominant role in the charge-to-spin conversion in the Bi2Se3/Ag/CoFeB system. Based on the first-principles calculations, we attribute our observation to the large Rashba-splitting bands which wrap the TSS band and has the same net spin polarization direction as TSS of Bi2Se3. Subsequently, we demonstrate for the first time the Rashba induced magnetization switching in Bi2Se3/Ag/Py with a low current density of 5.8 X 10^5 A/cm2.

قيم البحث

اقرأ أيضاً

Precise estimation of spin Hall angle as well as successful maximization of spin-orbit torque (SOT) form a basis of electronic control of magnetic properties with spintronic functionality. Until now, current-nonlinear Hall effect, or second harmonic Hall voltage has been utilized as one of the methods for estimating spin Hall angle, which is attributed to the magnetization oscillation by SOT. Here, we argue the second harmonic Hall voltage in magnetic/nonmagnetic topological insulator (TI) heterostructures, Cr$_x$(Bi$_{1-y}$Sb$_y$)$_{2-x}$Te$_3$/(Bi$_{1-y}$Sb$_y$)$_2$Te$_3$. From the angular, temperature and magnetic field dependence, it is unambiguously shown that the large second harmonic Hall voltage in TI heterostructures is governed not by SOT but mainly by asymmetric magnon scattering mechanism without magnetization oscillation. Thus, this method does not allow an accurate estimation of spin Hall angle when magnons largely contribute to electron scattering. Instead, the SOT contribution in a TI heterostructure is exemplified by current pulse induced non-volatile magnetization switching, which is realized with a current density of $sim 2.5 times 10^{10} mathrm{A/m}^2$, showing its potential as spintronic materials.
103 - Yi Wang , Dapeng Zhu , Yang Wu 2017
Topological insulators (TIs) with spin momentum locked topological surface states (TSS) are expected to exhibit a giant spin-orbit torque (SOT) in the TI/ferromagnet systems. To date, the TI SOT driven magnetization switching is solely reported in a Cr doped TI at 1.9 K. Here, we directly show giant SOT driven magnetization switching in a Bi2Se3/NiFe heterostructure at room temperature captured using a magneto-optic Kerr effect microscope. We identify a large charge to spin conversion efficiency of ~1-1.75 in the thin TI films, where the TSS is dominant. In addition, we find the current density required for the magnetization switching is extremely low, ~6x10^5 A cm-2, which is one to two orders of magnitude smaller than that with heavy metals. Our demonstration of room temperature magnetization switching of a conventional 3d ferromagnet using Bi2Se3 may lead to potential innovations in TI based spintronic applications.
Two-dimensional electron gas (2DEG) formed at the interface between SrTiO3 (STO) and LaAlO3 (LAO) insulating layer is supposed to possess strong Rashba spin-orbit coupling. To date, the inverse Edelstein effect (i.e. spin-to-charge conversion) in the 2DEG layer is reported. However, the direct effect of charge-to-spin conversion, an essential ingredient for spintronic devices in a current induced spin-orbit torque scheme, has not been demonstrated yet. Here we show, for the first time, a highly efficient spin generation with the efficiency of ~6.3 in the STO/LAO/CoFeB structure at room temperature by using spin torque ferromagnetic resonance. In addition, we suggest that the spin transmission through the LAO layer at high temperature range is attributed to the inelastic tunneling via localized states in the LAO band gap. Our findings may lead to potential applications in the oxide insulator based spintronic devices.
211 - E. Lesne , Y. Fu , S. Oyarzun 2016
The spin-orbit interaction couples the electrons motion to their spin. Accordingly, passing a current in a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice-versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronics functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronics hetero- and mesostructures. Here, we make use of an interface-driven spin-orbit coupling mechanism - the Rashba effect - in the oxide two-dimensional electron system (2DES) LaAlO3/SrTiO3 to achieve spin-to-charge conversion with unprecedented efficiency. Through spin-pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES.
Spin Hall effect, an electric generation of spin current, allows for efficient control of magnetization. Recent theory revealed that orbital Hall effect creates orbital current, which can be much larger than spin Hall-induced spin current. However, o rbital current cannot directly exert a torque on a ferromagnet, requiring a conversion process from orbital current to spin current. Here, we report two effective methods of the conversion through spin-orbit coupling engineering, which allows us to unambiguously demonstrate orbital-current-induced spin torque, or orbital Hall torque. We find that orbital Hall torque is greatly enhanced by introducing either a rare-earth ferromagnet Gd or a Pt interfacial layer with strong spin-orbit coupling in Cr/ferromagnet structures, indicating that the orbital current generated in Cr is efficiently converted into spin current in the Gd or Pt layer. Furthermore, we show that the orbital Hall torque can facilitate the reduction of switching current of perpendicular magnetization in spin-orbit-torque-based spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا