ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Magnetism

136   0   0.0 ( 0 )
 نشر من قبل Jennifer West
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jennifer West




اسأل ChatGPT حول البحث

Magnetic fields are involved in every astrophysical process on every scale: from planetary and stellar interiors to neutron stars, stellar wind bubbles and supernova remnants; from the interstellar medium in galactic disks, nuclei, spiral arms and halos to the intracluster and intergalactic media. They are involved in essentially every particle acceleration process and are thus fundamental to non-thermal physics in the Universe. Key questions include the origin of magnetic fields, their evolution over cosmic time, the amplification and decay processes that modify their strength, and their impact on other processes such as star formation and galaxy evolution. Astrophysical plasmas provide a unique laboratory for testing magnetic dynamo theory. The study of magnetic fields requires observations that span the wavelength range from radio through infrared, optical, UV, X-ray, and gamma-ray. Canada has an extremely strong record of research in cosmic magnetism, and has a significant leadership role in several ongoing and upcoming global programs. This white paper will review the science questions to be addressed in the study of cosmic magnetic fields and will describe the observational and theoretical opportunities and challenges afforded by the telescopes and modelling capabilities of today and tomorrow.



قيم البحث

اقرأ أيضاً

Magnetic field is ubiquitous in the Universe and it plays essential roles in various astrophysical phenomena, yet its real origin and evolution are poorly known. This article reviews current understanding of magnetic fields in the interstellar medium , the Milky Way Galaxy, external galaxies, active galactic nuclei, clusters of galaxies, and the cosmic web. Particularly, the review concentrates on the achievements that have been provided by centimeter and meter wavelength radio observations. The article also introduces various methods to analyze linear polarization data, including synchrotron radiation, Faraday rotation, depolarization, and Faraday tomography.
The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and Dark Matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in the light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era.
The Cosmic Dawn Intensity Mapper (CDIM) will transform our understanding of the era of reionization when the Universe formed the first stars and galaxies, and UV photons ionized the neutral medium. CDIM goes beyond the capabilities of upcoming facili ties by carrying out wide area spectro-imaging surveys, providing redshifts of galaxies and quasars during reionization as well as spectral lines that carry crucial information on their physical properties. CDIM will make use of unprecedented sensitivity to surface brightness to measure the intensity fluctuations of reionization on large-scales to provide a valuable and complementary dataset to 21-cm experiments. The baseline mission concept is an 83-cm infrared telescope equipped with a focal plane of 24 times 20482 detectors capable of R = 300 spectro-imaging observations over the wavelength range of 0.75 to 7.5 {mu}m using Linear Variable Filters (LVFs). CDIM provides a large field of view of 7.8 deg2 allowing efficient wide area surveys, and instead of moving instrumental components, spectroscopic mapping is obtained through a shift-and-stare strategy through spacecraft operations. CDIM design and capabilities focus on the needs of detecting faint galaxies and quasars during reionization and intensity fluctuation measurements of key spectral lines, including Lyman-{alpha} and H{alpha} radiation from the first stars and galaxies. The design is low risk, carries significant science and engineering margins, and makes use of technologies with high technical readiness level for space observations.
The recent availability of high-resolution far-infrared (FIR) polarization observations of galaxies using HAWC+/SOFIA has facilitated studies of extragalactic magnetic fields in the cold and dense molecular disks.We investigate if any significant str uctural differences are detectable in the kpc-scale magnetic field of the grand design face-on spiral galaxy M51 when traced within the diffuse (radio) and the dense and cold (FIR) interstellar medium (ISM). Our analysis reveals a complex scenario where radio and FIR polarization observations do not necessarily trace the same magnetic field structure. We find that the magnetic field in the arms is wrapped tighter at 154um than at 3 and 6 cm; statistically significant lower values for the magnetic pitch angle are measured at FIR in the outskirts (R > 7 kpc) of the galaxy. This difference is not detected in the interarm region. We find strong correlations of the polarization fraction and total intensity at FIR and radio with the gas column density and 12CO(1-0) velocity dispersion. We conclude that the arms show a relative increase of small-scale turbulent B-fields at regions with increasing column density and dispersion velocities of the molecular gas. No correlations are found with HI neutral gas. The star formation rate shows a clear correlation with the radio polarized intensity, which is not found in FIR, pointing to a small-scale dynamo-driven B-field amplification scenario. This work shows that multi-wavelength polarization observations are key to disentangling the interlocked relation between star formation, magnetic fields, and gas kinematics in the multi-phase ISM.
The origin of magnetic fields in the Universe is an open problem in astrophysics and fundamental physics. Polarization observations with the forthcoming large radio telescopes will open a new era in the observation of magnetic fields and should help to understand their origin. At low frequencies, LOFAR (10-240 MHz) will allow us to map the structure of weak magnetic fields in the outer regions and halos of galaxies, in galaxy clusters and in the Milky Way via their synchrotron emission. Even weaker magnetic fields can be measured at low frequencies with help of Faraday rotation measures. A detailed view of the magnetic fields in the local Milky Way will be derived by Faraday rotation measures from pulsars. First promising images with LOFAR have been obtained for the Crab pulsar-wind nebula, the spiral galaxy M51, the radio galaxy M87 and the galaxy clusters A2255 and A2256. With help of the polarimetric technique of Rotation Measure Synthesis, diffuse polarized emission has been detected from a magnetic bubble in the local Milky Way. Polarized emission and rotation measures were measured for more than 20 pulsars so far.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا