ترغب بنشر مسار تعليمي؟ اضغط هنا

Extragalactic Magnetism with SOFIA (Legacy Program) -- I: The magnetic field in the multi-phase interstellar medium of M51

67   0   0.0 ( 0 )
 نشر من قبل Alejandro Borlaff
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent availability of high-resolution far-infrared (FIR) polarization observations of galaxies using HAWC+/SOFIA has facilitated studies of extragalactic magnetic fields in the cold and dense molecular disks.We investigate if any significant structural differences are detectable in the kpc-scale magnetic field of the grand design face-on spiral galaxy M51 when traced within the diffuse (radio) and the dense and cold (FIR) interstellar medium (ISM). Our analysis reveals a complex scenario where radio and FIR polarization observations do not necessarily trace the same magnetic field structure. We find that the magnetic field in the arms is wrapped tighter at 154um than at 3 and 6 cm; statistically significant lower values for the magnetic pitch angle are measured at FIR in the outskirts (R > 7 kpc) of the galaxy. This difference is not detected in the interarm region. We find strong correlations of the polarization fraction and total intensity at FIR and radio with the gas column density and 12CO(1-0) velocity dispersion. We conclude that the arms show a relative increase of small-scale turbulent B-fields at regions with increasing column density and dispersion velocities of the molecular gas. No correlations are found with HI neutral gas. The star formation rate shows a clear correlation with the radio polarized intensity, which is not found in FIR, pointing to a small-scale dynamo-driven B-field amplification scenario. This work shows that multi-wavelength polarization observations are key to disentangling the interlocked relation between star formation, magnetic fields, and gas kinematics in the multi-phase ISM.



قيم البحث

اقرأ أيضاً

We present the properties of the magnetic field (B-field) in the starburst ring of the galaxy NGC 1097. Thermal polarized emission at 89 $mu$m using HAWC+/SOFIA shows that the polarized flux is spatially located at the contact regions of the outer-ba r with the starburst ring. The linear polarization decomposition analysis shows that the $89$ $mu$m and radio ($3.5$ and $6.2$ cm) polarization traces two different modes, $m$, of the B-field: a constant B-field orientation and dominated by $m=0$ at $89$ $mu$m, and a spiral B-field dominated by $m=2$ at radio. The $^{12}CO(2-1)$ integrated emission line peaks in the inner $sim0.69$ kpc, the FIR polarized flux peaks in the central $sim 1.02$ kpc, and the radio polarized flux peaks in the outer $sim1.39$ kpc of the starburst ring. Dust temperature is higher, $T_{89mu m} = 30.7pm0.4$ K, at the region of the FIR polarized flux than at the radios region, $T_{3.5cm} = 26.2pm1.7$ K. We argue that the B-field at 89 $mu$m is concentrated in the warmest region of a shock front caused by the galactic density wave in the contact regions between the outer-bar with the starburst ring. Radio polarization traces a superposition of the spiral B-field outside and within the starburst ring. According to Faraday rotation measures between $3.5$ and $6.2$ cm, the radial component of the B-field along the contact regions points toward the galaxys center on both sides. Gas streams follow the B-field, which feeds the black hole with matter from the host galaxy.
188 - J. Koda 2009
We report the highest-fidelity observations of the spiral galaxy M51 in CO emission, revealing the evolution of giant molecular clouds (GMCs) vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (so-called GMAs) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics --their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the inter-arm region and into the next spiral arm passage.
134 - D. Calzetti 2014
The Legacy ExtraGalactic UV Survey (LEGUS) is a Cycle 21 Treasury program on the Hubble Space Telescope, aimed at the investigation of star formation and its relation with galactic environment in nearby galaxies, from the scales of individual stars t o those of ~kpc-size clustered structures. Five-band imaging, from the near-ultraviolet to the I-band, with the Wide Field Camera 3, plus parallel optical imaging with the Advanced Camera for Surveys, is being collected for selected pointings of 50 galaxies within the local 12 Mpc. The filters used for the observations with the Wide Field Camera 3 are: F275W(2,704 A), F336W(3,355 A), F438W(4,325 A), F555W(5,308 A), and F814W(8,024 A); the parallel observations with the Advanced Camera for Surveys use the filters: F435W(4,328 A), F606W(5,921 A), and F814W(8,057 A). The multi-band images are yielding accurate recent (<~50 Myr) star formation histories from resolved massive stars and the extinction-corrected ages and masses of star clusters and associations. The extensive inventories of massive stars and clustered systems will be used to investigate the spatial and temporal evolution of star formation within galaxies. This will, in turn, inform theories of galaxy evolution and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of star formation at high redshift. This paper describes the survey, its goals and observational strategy, and the initial science results. Because LEGUS will provide a reference survey and a foundation for future observations with JWST and with ALMA, a large number of data products are planned for delivery to the community.
The ordered magnetic field observed via polarized synchrotron emission in nearby disc galaxies can be explained by a mean-field dynamo operating in the diffuse interstellar medium (ISM). Additionally, vertical-flux initial conditions are potentially able to influence this dynamo via the occurrence of the magneto-rotational instability (MRI). We aim to study the influence of various initial field configurations on the saturated state of the mean-field dynamo. This is motivated by the observation that different saturation behavior was previously obtained for different supernova rates. We perform direct numerical simulations (DNS) of three-dimensional local boxes of the vertically stratified, turbulent interstellar medium, employing shearing-periodic boundary conditions horizontally. Unlike in our previous work, we also impose a vertical seed magnetic field. We run the simulations until the growth of the magnetic energy becomes negligible. We furthermore perform simulations of equivalent 1D dynamo models, with an algebraic quenching mechanism for the dynamo coefficients. We compare the saturation of the magnetic field in the DNS with the algebraic quenching of a mean-field dynamo. The final magnetic field strength found in the direct simulation is in excellent agreement with a quenched $alphaOmega$~dynamo. For supernova rates representative of the Milky Way, field losses via a Galactic wind are likely responsible for saturation. We conclude that the relative strength of the turbulent and regular magnetic fields in spiral galaxies may depend on the galaxys star formation rate. We propose that a mean field approach with algebraic quenching may serve as a simple sub-grid scale model for galaxy evolution simulations including a prescribed feedback from magnetic fields.
460 - N. Schneider 2020
FEEDBACK is a SOFIA legacy program dedicated to study the interaction of massive stars with their environment. It performs a survey of 11 galactic high mass star forming regions in the 158 $mu$m (1.9 THz) line of CII and the 63 $mu$m (4.7 THz) line o f OI. We employ the 14 pixel LFA and 7 pixel HFA upGREAT instrument to spectrally resolve (0.24 MHz) these FIR structure lines. With an observing time of 96h, we will cover $sim$6700 arcmin$^2$ at 14.1$$ angular resolution for the CII line and 6.3$$ for the OI line. The observations started in spring 2019 (Cycle 7). Our aim is to understand the dynamics in regions dominated by different feedback processes from massive stars such as stellar winds, thermal expansion, and radiation pressure, and to quantify the mechanical energy injection and radiative heating efficiency. The CII line provides the kinematics of the gas and is one of the dominant cooling lines of gas for low to moderate densities and UV fields. The OI line traces warm and high-density gas, excited in photodissociations regions with a strong UV field or by shocks. The source sample spans a broad range in stellar characteristics from single OB stars, to small groups of O stars, to rich young stellar clusters, to ministarburst complexes. It contains well-known targets such as Aquila, the Cygnus X region, M16, M17, NGC7538, NGC6334, Vela, and W43 as well as a selection of HII region bubbles, namely RCW49, RCW79, and RCW120. These CII maps, together with the less explored OI 63 $mu$m line, provide an outstanding database for the community. They will be made publically available and will trigger further studies and follow-up observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا