ترغب بنشر مسار تعليمي؟ اضغط هنا

Revived Fossil Plasma Sources in Galaxy Clusters

122   0   0.0 ( 0 )
 نشر من قبل Soumyajit Mandal
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well established that particle acceleration by shocks and turbulence in the intra-cluster medium can produce cluster-scale synchrotron emitting sources. However, the detailed physics of these particle acceleration processes is still not well understood. One of the main open questions is the role of fossil relativistic electrons that have been deposited in the intra-cluster medium by radio galaxies. These synchrotron-emitting electrons are very difficult to study, as their radiative life time is only tens of Myrs at GHz frequencies, and are therefore a relatively unexplored population. Despite the typical steep radio spectrum due to synchrotron losses, these fossil electrons are barely visible even at radio frequencies well below a GHz. However, when a pocket of fossil radio plasma is compressed, it boosts the visibility at sub-GHz frequencies, creating so-called radio phoenices. This compression can be the result of bulk motion and shocks in the ICM due to merger activity. In this paper, we demonstrate the discovery potential of low frequency radio sky surveys to find and study revived fossil plasma sources in galaxy clusters. We used the 150~MHz TGSS and 1.4 GHz NVSS sky surveys to identify candidate radio phoenices. A subset of three candidates were studied in detail using deep multi-band radio observations (LOFAR and GMRT), X-ray (textit{Chandra} or textit{XMM-Newton}) and archival optical observations. Two of the three sources are new discoveries. Using these observations, we identified common observational properties (radio morphology, ultra-steep spectrum, X-ray luminosity, dynamical state) that will enable us to identify this class of sources more easily, and help to understand the physical origin of these sources.

قيم البحث

اقرأ أيضاً

Thermal gas in the center of galaxy clusters can show substantial motions that generate surface-brightness and temperature discontinuities known as cold fronts. The motions may be triggered by minor or off-axis mergers that preserve the cool core of the system. The dynamics of the thermal gas can also generate radio emission from the intra-cluster medium (ICM) and impact the evolution of clusters radio sources. We aim to study the central region of Abell 1775, a system in an ambiguous dynamical state at $z=0.072$ which is known to host an extended head-tail radio galaxy, with the goal of investigating the connection between thermal and nonthermal components in its center. We made use of a deep (100 ks) Chandra observation accompanied by LOFAR 144 MHz, GMRT 235 MHz and 610 MHz, and VLA 1.4 GHz radio data. We find a spiral-like pattern in the X-ray surface brightness that is mirrored in the temperature and pseudo-entropy maps. Additionally, we characterize an arc-shaped cold front in the ICM. We interpret these features in the context of a slingshot gas tail scenario. The structure of the head-tail radio galaxy breaks at the position of the cold front, showing an extension that is detected only at low frequencies, likely due to its steep and curved spectrum. We speculate that particle reacceleration is occurring in the outer region of this tail, which in total covers a projected size of $sim800$ kpc. We also report the discovery of revived fossil plasma with ultra-steep spectrum radio emission in the cluster core together with a central diffuse radio source that is bounded by the arc-shaped cold front. The results reported in this work demonstrate the interplay between thermal and nonthermal components in the cluster center and the presence of ongoing particle reacceleration in the ICM on different scales.
We investigate the properties of the hot gas in four fossil galaxy systems detected at high significance in the Planck Sunyaev-Zeldovich (SZ) survey. XMM-Newton observations reveal overall temperatures of kT ~ 5-6 keV and yield hydrostatic masses M50 0,HE > 3.5 x 10e14 Msun, confirming their nature as bona fide massive clusters. We measure the thermodynamic properties of the hot gas in X-rays (out to beyond R500 in three cases) and derive their individual pressure profiles out to R ~ 2.5 R500 with the SZ data. We combine the X-ray and SZ data to measure hydrostatic mass profiles and to examine the hot gas content and its radial distribution. The average Navarro-Frenk-White (NFW) concentration parameter, c500 = 3.2 +/- 0.4, is the same as that of relaxed `normal clusters. The gas mass fraction profiles exhibit striking variation in the inner regions, but converge to approximately the cosmic baryon fraction (corrected for depletion) at R500. Beyond R500 the gas mass fraction profiles again diverge, which we interpret as being due to a difference in gas clumping and/or a breakdown of hydrostatic equilibrium in the external regions. Overall our observations point to considerable radial variation in the hot gas content and in the gas clumping and/or hydrostatic equilibrium properties in these fossil clusters, at odds with the interpretation of their being old, evolved and undisturbed. At least some fossil objects appear to be dynamically young.
Non-thermal properties of galaxy clusters have been studied with detailed and deep radio images in comparison with X-ray data. While much progress has been made, most of the studied clusters are at a relatively low redshift (z < 0.3). We here investi gate the evolutionary properties of the non-thermal cluster emission using two statistically complete samples at z > 0.3. We obtained short JVLA observations at L-band of the statistically complete sample of very X-ray luminous clusters from the Massive Cluster Survey (MACS) presented by Ebeling et al. (2010), and redshift range 0.3 - 0.5. We add to this list the complete sample of the 12 most distant MACS clusters (z > 0.5) presented in Ebeling et al. (2007). Most clusters show evidence of emission in the radio regime. We present the radio properties of all clusters in our sample and show images of newly detected diffuse sources. A radio halo is detected in 19 clusters, and five clusters contain a relic source. Most of the brightest cluster galaxies (BCG) in relaxed clusters show radio emission with powers typical of FRII radio galaxies, and some are surrounded by a radio mini-halo. The high frequency of radio emission from the BCG in relaxed clusters suggests that BCG feedback mechanisms are in place already at z about 0.6. The properties of radio halos and the small number of detected relics suggest redshift evolution in the properties of diffuse sources. The radio power (and size) of radio halos could be related to the number of past merger events in the history of the system. In this scenario, the presence of a giant and high-power radio halo is indicative of an evolved system with a large number of past major mergers.
79 - John ZuHone 2016
The most massive baryonic component of galaxy clusters is the intracluster medium (ICM), a diffuse, hot, weakly magnetized plasma that is most easily observed in the X-ray band. Despite being observed for decades, the macroscopic transport properties of the ICM are still not well-constrained. A path to determine macroscopic ICM properties opened up with the discovery of cold fronts. These were observed as sharp discontinuities in surface brightness and temperature in the ICM, with the property that the brighter (and denser) side of the discontinuity is the colder one. The high spatial resolution of the Chandra X-ray Observatory revealed two puzzles about the cold fronts. First, they should be subject to Kelvin-Helmholtz instabilites, yet in many cases they appear relatively smooth and undisturbed. Second, the width of the interface between the two gas phases is typically narrower than the mean free path of the particles in the plasma, indicating negligible thermal conduction. From the time of their discovery, it was realized that these special characteristics of cold fronts may be used to probe the physical properties of the cluster plasma. In this review, we will discuss the recent simulations of cold front formation and evolution in galaxy clusters, with a focus on those which have attempted to use these features to constrain the physics of the ICM. In particular, we will focus on the effects of magnetic fields, viscosity, and thermal conductivity on the stability properties and long-term evolution of cold fronts. We conclude with a discussion on what important questions remain unanswered, and the future role of simulations and the next generation of X-ray observatories.
We will discuss here how structures observed in clusters of galaxies can provide us insight on the formation and evolution of these objects. We will focus primarily on X-ray observations and results from hydrodynamical $N$-body simulations. This pape r is based on a talk given at the School of Cosmology Jose Plinio Baptista -- `Cosmological perturbations and Structure Formation in Ubu/ES, Brazil.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا