ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure in galaxy clusters

392   0   0.0 ( 0 )
 نشر من قبل Gastao B. Lima Neto
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We will discuss here how structures observed in clusters of galaxies can provide us insight on the formation and evolution of these objects. We will focus primarily on X-ray observations and results from hydrodynamical $N$-body simulations. This paper is based on a talk given at the School of Cosmology Jose Plinio Baptista -- `Cosmological perturbations and Structure Formation in Ubu/ES, Brazil.



قيم البحث

اقرأ أيضاً

142 - I. Marini , A. Saro , S. Borgani 2020
Cosmological N-body simulations represent an excellent tool to study the formation and evolution of dark matter (DM) halos and the mechanisms that have originated the universal profile at the largest mass scales in the Universe. In particular, the co mbination of the velocity dispersion $sigma_mathrm{v}$ with the density $rho$ can be used to define the pseudo-entropy $S(r)=sigma_mathrm{v}^2/rho^{,2/3}$, whose profile is well-described by a simple power-law $Spropto,r^{,alpha}$. We analyze a set of cosmological hydrodynamical re-simulations of massive galaxy clusters and study the pseudo-entropy profiles as traced by different collisionless components in simulated galaxy clusters: DM, stars, and substructures. We analyze four sets of simulations, exploring different resolution and physics (N-body and full hydrodynamical simulations) to investigate convergence and the impact of baryons. We find that baryons significantly affect the inner region of pseudo-entropy profiles as traced by substructures, while DM particles profiles are characterized by an almost universal behavior, thus suggesting that the level of pseudo-entropy could represent a potential low-scatter mass-proxy. We compare observed and simulated pseudo-entropy profiles and find good agreement in both normalization and slope. We demonstrate, however, that the method used to derive observed pseudo-entropy profiles could introduce biases and underestimate the impact of mergers. Finally, we investigate the pseudo-entropy traced by the stars focusing our interest in the dynamical distinction between intracluster light (ICL) and the stars bound to the brightest cluster galaxy (BCG): the combination of these two pseudo-entropy profiles is well-described by a single power-law out to almost the entire cluster virial radius.
111 - Keiichi Umetsu 2018
We reconstruct the two-dimensional (2D) matter distributions in 20 high-mass galaxy clusters selected from the CLASH survey by using the new approach of performing a joint weak lensing analysis of 2D shear and azimuthally averaged magnification measu rements. This combination allows for a complete analysis of the field, effectively breaking the mass-sheet degeneracy. In a Bayesian framework, we simultaneously constrain the mass profile and morphology of each individual cluster assuming an elliptical Navarro-Frenk-White halo characterized by the mass, concentration, projected axis ratio, and position angle of the projected major axis.. We find that spherical mass estimates of the clusters from azimuthally averaged weak-lensing measurements in previous work are in excellent agreement with our results from a full 2D analysis. Combining all 20 clusters in our sample, we detect the elliptical shape of weak-lensing halos at the $5sigma$ significance level within a scale of 2Mpc$/h$. The median projected axis ratio is $0.67pm 0.07$ at a virial mass of $M_mathrm{vir}=(15.2pm 2.8) times 10^{14} M_odot$, which is in agreement with theoretical predictions of the standard collisionless cold dark matter model. We also study misalignment statistics of the brightest cluster galaxy, X-ray, thermal Sunyaev-Zeldovich effect, and strong-lensing morphologies with respect to the weak-lensing signal. Among the three baryonic tracers studied here, we find that the X-ray morphology is best aligned with the weak-lensing mass distribution, with a median misalignment angle of $21pm 7$ degrees. We also conduct a stacked quadrupole shear analysis assuming that the X-ray major axis is aligned with that of the projected mass distribution. This yields a consistent axis ratio of $0.67pm 0.10$, suggesting again a tight alignment between the intracluster gas and dark matter.
It is well established that particle acceleration by shocks and turbulence in the intra-cluster medium can produce cluster-scale synchrotron emitting sources. However, the detailed physics of these particle acceleration processes is still not well un derstood. One of the main open questions is the role of fossil relativistic electrons that have been deposited in the intra-cluster medium by radio galaxies. These synchrotron-emitting electrons are very difficult to study, as their radiative life time is only tens of Myrs at GHz frequencies, and are therefore a relatively unexplored population. Despite the typical steep radio spectrum due to synchrotron losses, these fossil electrons are barely visible even at radio frequencies well below a GHz. However, when a pocket of fossil radio plasma is compressed, it boosts the visibility at sub-GHz frequencies, creating so-called radio phoenices. This compression can be the result of bulk motion and shocks in the ICM due to merger activity. In this paper, we demonstrate the discovery potential of low frequency radio sky surveys to find and study revived fossil plasma sources in galaxy clusters. We used the 150~MHz TGSS and 1.4 GHz NVSS sky surveys to identify candidate radio phoenices. A subset of three candidates were studied in detail using deep multi-band radio observations (LOFAR and GMRT), X-ray (textit{Chandra} or textit{XMM-Newton}) and archival optical observations. Two of the three sources are new discoveries. Using these observations, we identified common observational properties (radio morphology, ultra-steep spectrum, X-ray luminosity, dynamical state) that will enable us to identify this class of sources more easily, and help to understand the physical origin of these sources.
We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey (SDSS). Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 +/- 0.007) is higher than that in single-component clusters (0.175 +/- 0.016) for galaxies with M^0.1_r < -20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2 sigma, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.
We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, whil e we will also discuss numerical predictions on properties of the galaxy population in clusters. Many of the salient observed properties of clusters, such as X-ray scaling relations, radial profiles of entropy and density of the intracluster gas, and radial distribution of galaxies are reproduced quite well. In particular, the outer regions of cluster at radii beyond about 10 per cent of the virial radius are quite regular and exhibit scaling with mass remarkably close to that expected in the simplest case in which only the action of gravity determines the evolution of the intra-cluster gas. However, simulations generally fail at reproducing the observed cool-core structure of clusters: simulated clusters generally exhibit a significant excess of gas cooling in their central regions, which causes an overestimate of the star formation and incorrect temperature and entropy profiles. The total baryon fraction in clusters is below the mean universal value, by an amount which depends on the cluster-centric distance and the physics included in the simulations, with interesting tensions between observed stellar and gas fractions in clusters and predictions of simulations. Besides their important implications for the cosmological application of clusters, these puzzles also point towards the important role played by additional physical processes, beyond those already included in the simulations. We review the role played by these processes, along with the difficulty for their implementation, and discuss the outlook for the future progress in numerical modeling of clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا