ﻻ يوجد ملخص باللغة العربية
Empirical analysis is often the first step towards the birth of a conjecture. This is the case of the Birch-Swinnerton-Dyer (BSD) Conjecture describing the rational points on an elliptic curve, one of the most celebrated unsolved problems in mathematics. Here we extend the original empirical approach, to the analysis of the Cremona database of quantities relevant to BSD, inspecting more than 2.5 million elliptic curves by means of the latest techniques in data science, machine-learning and topological data analysis. Key quantities such as rank, Weierstrass coefficients, period, conductor, Tamagawa number, regulator and order of the Tate-Shafarevich group give rise to a high-dimensional point-cloud whose statistical properties we investigate. We reveal patterns and distributions in the rank versus Weierstrass coefficients, as well as the Beta distribution of the BSD ratio of the quantities. Via gradient boosted trees, machine learning is applied in finding inter-correlation amongst the various quantities. We anticipate that our approach will spark further research on the statistical properties of large datasets in Number Theory and more in general in pure Mathematics.
We take an approach toward counting the number of n for which the curves E_n: y^2=x^3-n^2x have 2-Selmer groups of a given size. This question was also discussed in a pair of Invent. Math. papers by Roger Heath-Brown. We discuss the connection betwee
We provide two proofs that the conjecture of Artin-Tate for a fibered surface is equivalent to the conjecture of Birch-Swinnerton-Dyer for the Jacobian of the generic fibre. As a byproduct, we obtain a new proof of a theorem of Geisser relating the o
Research at the intersection of machine learning and the social sciences has provided critical new insights into social behavior. At the same time, a variety of critiques have been raised ranging from technical issues with the data used and features
As we are fast approaching the beginning of a paradigm shift in the field of science, Data driven science (the so called fourth science paradigm) is going to be the driving force in research and innovation. From medicine to biodiversity and astronomy
We unite two themes in dyadic analysis and number theory by studying an analogue of the failure of the Hasse principle in harmonic analysis. Explicitly, we construct an explicit family of measures on the real line that are $p$-adic doubling for any f