ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermally Driven Approach To Fill Sub-10-nm Pipettes with Batch Production

77   0   0.0 ( 0 )
 نشر من قبل Shinji Watanabe
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Typically, utilization of small nanopipettes results in either high sensitivity or spatial resolution in modern nanoscience and nanotechnology. However, filling a nanopipette with a sub-10-nm pore diameter remains a significant challenge. Here, we introduce a thermally driven approach to filling sub-10-nm pipettes with batch production, regardless of their shape. A temperature gradient is applied to transport water vapor from the backside of nanopipettes to the tip region until bubbles are completely removed from this region. The electrical contact and pore size for filling nanopipettes are confirmed by current-voltage and transmission electron microscopy (TEM) measurements, respectively. In addition, we quantitatively compare the pore size between the TEM characterization and estimation on the basis of pore radius and conductance. The validity of this method provides a foundation for highly sensitive detection of single molecules and high spatial resolution imaging of nanostructures.



قيم البحث

اقرأ أيضاً

Glass nanopipettes are widely used for various applications in nanosciences. In most of the applications, it is important to characterize their geometrical parameters, such as the aperture size and the inner cone angle at the tip region. For nanopipe ttes with sub-10 nm aperture and thin wall thickness, transmission electron microscopy (TEM) must be most instrumental in their precise geometrical measurement. However, this measurement has remained a challenge because heat generated by electron beam irradiation would largely deform sub-10-nm nanopipettes. Here we provide methods for preparing TEM specimens that do not cause deformation of such tiny nanopipettes.
142 - M. Luong 2020
Aluminum-germanium nanowires (NWs) thermal activated solid state reaction is a promising system as very sharp and well defined one dimensional contacts can be created between a metal and a semiconductor, that can become a quantum dot if the size beco mes sufficiently small. In the search for high performance devices without variability, it is of high interest to allow deterministic fabrication of nanowire quantum dots, avoiding sample variability and obtaining atomic scale precision on the fabricated dot size. In this paper, we present a reliable fabrication process to produce sub-10 nm Ge quantum dots (QDs), using a combination of ex-situ thermal annealing via rapid thermal annealing (RTA) and in-situ Joule heating technique in a transmission electron microscope (TEM). First we present in-situ direct joule heating experiments showing how the heating electrode could be damaged due to the formation of Al crystals and voids at the vicinity of the metal/NW contact, likely related with electro-migration phenomena. We show that the contact quality can be preserved by including an additional ex-situ RTA step prior to the in-situ heating. The in-situ observations also show in real-time how the exchange reaction initiates simultaneously from several locations underneath the Al contact pad, and the Al crystal grows gradually inside the initial Ge NW with the growth interface along a Ge(111) lattice plane. Once the reaction front moves out from underneath the contact metal, two factors jeopardize an atomically accurate control of the Al/Ge reaction interface. We observed a local acceleration of the reaction interface due to the electron beam irradiation in the transmission electron microscope as well as the appearance of large jumps of the interface in unpassivated Ge wires while a smooth advancement of the reaction interface was observed in wires with an Al2O3 protecting shell on the surface. Carefully controlling all aspects of the exchange reaction, we demonstrate a fabrication process combining ex-situ and in-situ heating techniques to precisely control and produce axial Al/Ge/Al NW heterostructures with an ultra-short Ge segment down to 8 nanometers. Practically, the scaling down of Ge segment length is only limited by the microscope resolution.
Fluid-driven elastomeric actuators (FEAs) are among the most popular actuators in the emerging field of soft robotics. Intrinsically compliant, with continuum of motion, large strokes, little friction, and high power-to-weight ratio, they are very si milar to biological muscles, and have enabled new applications in automation, architecture, medicine, and human-robot interaction. To foster future applications of FEAs, in this paper we present a new manufacturing method for fast and precise scalable production of complex FEAs of high quality (leak-free, single-body form, with <0.2 mm precision). The method is based on 3d moulding and supports elastomers with a wide range of viscosity, pot life, and Youngs modulus. We developed this process for two different settings: one in laboratory conditions for fast prototyping with 3d printed moulds and using multi-component liquid elastomers, and the other process in an industrial setting with 3d moulds micromachined in metal and applying compression moulding. We demonstrate these methods in fabrication of up to several tens of two-axis, three-chambered soft actuators, with two types of chamber walls: cylindrical and corrugated. The actuators are then applied as motion drivers in kinetic photovoltaic building envelopes.
Si nanopillars of less than 50 nm diameter have been irradiated in a helium ion microscope with a focused Ne$^+$ beam. The morphological changes due to ion beam irradiation at room temperature and elevated temperatures have been studied with the tran smission electron microscope. We found that the shape changes of the nanopillars depend on irradiation-induced amorphization and thermally driven dynamic annealing. While at room temperature, the nanopillars evolve to a conical shape due to ion-induced plastic deformation and viscous flow of amorphized Si, simultaneous dynamic annealing during the irradiation at elevated temperatures prevents amorphization which is necessary for the viscous flow. Above the critical temperature of ion-induced amorphization, a steady decrease of the diameter was observed as a result of the dominating forward sputtering process through the nanopillar sidewalls. Under these conditions the nanopillars can be thinned down to a diameter of 10 nm in a well-controlled manner. A deeper understanding of the pillar thinning process has been achieved by a comparison of experimental results with 3D computer simulations based on the binary collision approximation.
Spatial control of wettability is key to many applications of microfluidic devices, ranging from double emulsion generation to localized cell adhesion. A number of techniques, often based on masking, have been developed to produce spatially-resolved wettability patterns at the surface of poly(dimethylsiloxane) (PDMS) elastomers. A major impediment they face is the natural hydrophobic recovery of PDMS: hydrophilized PDMS surfaces tend to return to hydrophobicity with time, mainly because of diffusion of low molecular weight silicone species to the surface. Instead of trying to avoid this phenomenon, we propose in this work to take advantage of hydrophobic recovery to modulate spatially the surface wettability of PDMS. Because temperature speeds up the rate of hydrophobic recovery, we show that space-resolved hydrophobic patterns can be produced by locally heating a plasma-hydrophilized PDMS surface with microresistors. Importantly, local wettability is quantified in microchannels using a fluorescent probe. This thermo-patterning technique provides a simple route to in situ wettability patterning in closed PDMS chips, without requiring further surface chemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا