ترغب بنشر مسار تعليمي؟ اضغط هنا

Pan-Private Uniformity Testing

69   0   0.0 ( 0 )
 نشر من قبل Matthew Joseph
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A centrally differentially private algorithm maps raw data to differentially private outputs. In contrast, a locally differentially private algorithm may only access data through public interaction with data holders, and this interaction must be a differentially private function of the data. We study the intermediate model of pan-privacy. Unlike a locally private algorithm, a pan-private algorithm receives data in the clear. Unlike a centrally private algorithm, the algorithm receives data one element at a time and must maintain a differentially private internal state while processing this stream. First, we show that pure pan-privacy against multiple intrusions on the internal state is equivalent to sequentially interactive local privacy. Next, we contextualize pan-privacy against a single intrusion by analyzing the sample complexity of uniformity testing over domain $[k]$. Focusing on the dependence on $k$, centrally private uniformity testing has sample complexity $Theta(sqrt{k})$, while noninteractive locally private uniformity testing has sample complexity $Theta(k)$. We show that the sample complexity of pure pan-private uniformity testing is $Theta(k^{2/3})$. By a new $Omega(k)$ lower bound for the sequentially interactive setting, we also separate pan-private from sequentially interactive locally private and multi-intrusion pan-private uniformity testing.

قيم البحث

اقرأ أيضاً

We introduce a new $(epsilon_p, delta_p)$-differentially private algorithm for the $k$-means clustering problem. Given a dataset in Euclidean space, the $k$-means clustering problem requires one to find $k$ points in that space such that the sum of s quares of Euclidean distances between each data point and its closest respective point among the $k$ returned is minimised. Although there exist privacy-preserving methods with good theoretical guarantees to solve this problem [Balcan et al., 2017; Kaplan and Stemmer, 2018], in practice it is seen that it is the additive error which dictates the practical performance of these methods. By reducing the problem to a sequence of instances of maximum coverage on a grid, we are able to derive a new method that achieves lower additive error then previous works. For input datasets with cardinality $n$ and diameter $Delta$, our algorithm has an $O(Delta^2 (k log^2 n log(1/delta_p)/epsilon_p + ksqrt{d log(1/delta_p)}/epsilon_p))$ additive error whilst maintaining constant multiplicative error. We conclude with some experiments and find an improvement over previously implemented work for this problem.
Data is continuously generated by modern data sources, and a recent challenge in machine learning has been to develop techniques that perform well in an incremental (streaming) setting. In this paper, we investigate the problem of private machine lea rning, where as common in practice, the data is not given at once, but rather arrives incrementally over time. We introduce the problems of private incremental ERM and private incremental regression where the general goal is to always maintain a good empirical risk minimizer for the history observed under differential privacy. Our first contribution is a generic transformation of private batch ERM mechanisms into private incremental ERM mechanisms, based on a simple idea of invoking the private batch ERM procedure at some regular time intervals. We take this construction as a baseline for comparison. We then provide two mechanisms for the private incremental regression problem. Our first mechanism is based on privately constructing a noisy incremental gradient function, which is then used in a modified projected gradient procedure at every timestep. This mechanism has an excess empirical risk of $approxsqrt{d}$, where $d$ is the dimensionality of the data. While from the results of [Bassily et al. 2014] this bound is tight in the worst-case, we show that certain geometric properties of the input and constraint set can be used to derive significantly better results for certain interesting regression problems.
Given a data set of size $n$ in $d$-dimensional Euclidean space, the $k$-means problem asks for a set of $k$ points (called centers) so that the sum of the $ell_2^2$-distances between points of a given data set of size $n$ and the set of $k$ centers is minimized. Recent work on this problem in the locally private setting achieves constant multiplicative approximation with additive error $tilde{O} (n^{1/2 + a} cdot k cdot max {sqrt{d}, sqrt{k} })$ and proves a lower bound of $Omega(sqrt{n})$ on the additive error for any solution with a constant number of rounds. In this work we bridge the gap between the exponents of $n$ in the upper and lower bounds on the additive error with two new algorithms. Given any $alpha>0$, our first algorithm achieves a multiplicative approximation guarantee which is at most a $(1+alpha)$ factor greater than that of any non-private $k$-means clustering algorithm with $k^{tilde{O}(1/alpha^2)} sqrt{d n} mbox{poly}log n$ additive error. Given any $c>sqrt{2}$, our second algorithm achieves $O(k^{1 + tilde{O}(1/(2c^2-1))} sqrt{d n} mbox{poly} log n)$ additive error with constant multiplicative approximation. Both algorithms go beyond the $Omega(n^{1/2 + a})$ factor that occurs in the additive error for arbitrarily small parameters $a$ in previous work, and the second algorithm in particular shows for the first time that it is possible to solve the locally private $k$-means problem in a constant number of rounds with constant factor multiplicative approximation and polynomial dependence on $k$ in the additive error arbitrarily close to linear.
We initiate the study of hypothesis selection under local differential privacy. Given samples from an unknown probability distribution $p$ and a set of $k$ probability distributions $mathcal{Q}$, we aim to output, under the constraints of $varepsilon $-local differential privacy, a distribution from $mathcal{Q}$ whose total variation distance to $p$ is comparable to the best such distribution. This is a generalization of the classic problem of $k$-wise simple hypothesis testing, which corresponds to when $p in mathcal{Q}$, and we wish to identify $p$. Absent privacy constraints, this problem requires $O(log k)$ samples from $p$, and it was recently shown that the same complexity is achievable under (central) differential privacy. However, the naive approach to this problem under local differential privacy would require $tilde O(k^2)$ samples. We first show that the constraint of local differential privacy incurs an exponential increase in cost: any algorithm for this problem requires at least $Omega(k)$ samples. Second, for the special case of $k$-wise simple hypothesis testing, we provide a non-interactive algorithm which nearly matches this bound, requiring $tilde O(k)$ samples. Finally, we provide sequentially interactive algorithms for the general case, requiring $tilde O(k)$ samples and only $O(log log k)$ rounds of interactivity. Our algorithms are achieved through a reduction to maximum selection with adversarial comparators, a problem of independent interest for which we initiate study in the parallel setting. For this problem, we provide a family of algorithms for each number of allowed rounds of interaction $t$, as well as lower bounds showing that they are near-optimal for every $t$. Notably, our algorithms result in exponential improvements on the round complexity of previous methods.
The correlations and network structure amongst individuals in datasets today---whether explicitly articulated, or deduced from biological or behavioral connections---pose new issues around privacy guarantees, because of inferences that can be made ab out one individual from anothers data. This motivates quantifying privacy in networked contexts in terms of inferential privacy---which measures the change in beliefs about an individuals data from the result of a computation---as originally proposed by Dalenius in the 1970s. Inferential privacy is implied by differential privacy when data are independent, but can be much worse when data are correlated; indeed, simple examples, as well as a general impossibility theorem of Dwork and Naor, preclude the possibility of achieving non-trivial inferential privacy when the adversary can have arbitrary auxiliary information. In this paper, we ask how differential privacy guarantees translate to guarantees on inferential privacy in networked contexts: specifically, under what limitations on the adversarys information about correlations, modeled as a prior distribution over datasets, can we deduce an inferential guarantee from a differential one? We prove two main results. The first result pertains to distributions that satisfy a natural positive-affiliation condition, and gives an upper bound on the inferential privacy guarantee for any differentially private mechanism. This upper bound is matched by a simple mechanism that adds Laplace noise to the sum of the data. The second result pertains to distributions that have weak correlations, defined in terms of a suitable influence matrix. The result provides an upper bound for inferential privacy in terms of the differential privacy parameter and the spectral norm of this matrix.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا