ترغب بنشر مسار تعليمي؟ اضغط هنا

SoildNet: Soiling Degradation Detection in Autonomous Driving

129   0   0.0 ( 0 )
 نشر من قبل Arindam Das
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Arindam Das




اسأل ChatGPT حول البحث

In the field of autonomous driving, camera sensors are extremely prone to soiling because they are located outside of the car and interact with environmental sources of soiling such as rain drops, snow, dust, sand, mud and so on. This can lead to either partial or complete vision degradation. Hence detecting such decay in vision is very important for safety and overall to preserve the functionality of the autonomous components in autonomous driving. The contribution of this work involves: 1) Designing a Deep Convolutional Neural Network (DCNN) based baseline network, 2) Exploiting several network remodelling techniques such as employing static and dynamic group convolution, channel reordering to compress the baseline architecture and make it suitable for low power embedded systems with nearly 1 TOPS, 3) Comparing various result metrics of all interim networks dedicated for soiling degradation detection at tile level of size 64 x 64 on input resolution 1280 x 768. The compressed network, is called SoildNet (Sand, snOw, raIn/dIrt, oiL, Dust/muD) that uses only 9.72% trainable parameters of the base network and reduces the model size by more than 7 times with no loss in accuracy



قيم البحث

اقرأ أيضاً

We present a simple and flexible object detection framework optimized for autonomous driving. Building on the observation that point clouds in this application are extremely sparse, we propose a practical pillar-based approach to fix the imbalance is sue caused by anchors. In particular, our algorithm incorporates a cylindrical projection into multi-view feature learning, predicts bounding box parameters per pillar rather than per point or per anchor, and includes an aligned pillar-to-point projection module to improve the final prediction. Our anchor-free approach avoids hyperparameter search associated with past methods, simplifying 3D object detection while significantly improving upon state-of-the-art.
Human drivers produce a vast amount of data which could, in principle, be used to improve autonomous driving systems. Unfortunately, seemingly straightforward approaches for creating end-to-end driving models that map sensor data directly into drivin g actions are problematic in terms of interpretability, and typically have significant difficulty dealing with spurious correlations. Alternatively, we propose to use this kind of action-based driving data for learning representations. Our experiments show that an affordance-based driving model pre-trained with this approach can leverage a relatively small amount of weakly annotated imagery and outperform pure end-to-end driving models, while being more interpretable. Further, we demonstrate how this strategy outperforms previous methods based on learning inverse dynamics models as well as other methods based on heavy human supervision (ImageNet).
Deep neural networks have been widely studied in autonomous driving applications such as semantic segmentation or depth estimation. However, training a neural network in a supervised manner requires a large amount of annotated labels which are expens ive and time-consuming to collect. Recent studies leverage synthetic data collected from a virtual environment which are much easier to acquire and more accurate compared to data from the real world, but they usually suffer from poor generalization due to the inherent domain shift problem. In this paper, we propose a Domain-Agnostic Contrastive Learning (DACL) which is a two-stage unsupervised domain adaptation framework with cyclic adversarial training and contrastive loss. DACL leads the neural network to learn domain-agnostic representation to overcome performance degradation when there exists a difference between training and test data distribution. Our proposed approach achieves better performance in the monocular depth estimation task compared to previous state-of-the-art methods and also shows effectiveness in the semantic segmentation task.
As autonomous driving systems mature, motion forecasting has received increasing attention as a critical requirement for planning. Of particular importance are interactive situations such as merges, unprotected turns, etc., where predicting individua l object motion is not sufficient. Joint predictions of multiple objects are required for effective route planning. There has been a critical need for high-quality motion data that is rich in both interactions and annotation to develop motion planning models. In this work, we introduce the most diverse interactive motion dataset to our knowledge, and provide specific labels for interacting objects suitable for developing joint prediction models. With over 100,000 scenes, each 20 seconds long at 10 Hz, our new dataset contains more than 570 hours of unique data over 1750 km of roadways. It was collected by mining for interesting interactions between vehicles, pedestrians, and cyclists across six cities within the United States. We use a high-accuracy 3D auto-labeling system to generate high quality 3D bounding boxes for each road agent, and provide corresponding high definition 3D maps for each scene. Furthermore, we introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models. Finally, we provide strong baseline models for individual-agent prediction and joint-prediction. We hope that this new large-scale interactive motion dataset will provide new opportunities for advancing motion forecasting models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا