ﻻ يوجد ملخص باللغة العربية
We demonstrate the use of individual magnetic nanowires (NWs), grown by focused electron beam induced deposition (FEBID), as scanning magnetic force sensors. Measurements of their mechanical susceptibility, thermal motion, and magnetic response show that the NWs posses high-quality flexural mechanical modes and a strong remanent magnetization pointing along their long axis. Together, these properties make the NWs excellent sensors of weak magnetic field patterns, as confirmed by calibration measurements on a micron-sized current-carrying wire and magnetic scanning probe images of a permalloy disk. The flexibility of FEBID in terms of the composition, geometry, and growth location of the resulting NWs, makes it ideal for fabricating scanning probes specifically designed for imaging subtle patterns of magnetization or current density.
Focused electron beam induced deposition (FEBID) is a direct-write method for the fabrication of nanostructures whose lateral resolution rivals that of advanced electron lithography but is in addition capable of creating complex three-dimensional nan
In the majority of cases nanostructures prepared by focused electron beam induced deposition (FEBID) employing an organometallic precursor contain predominantly carbon-based ligand dissociation products. This is unfortunate with regard to using this
Superconducting nanowires can be fabricated by decomposition of an organometallic gas using a focused beam of Ga ions. However, physical damage and unintentional doping often results from the exposure to the ion beam, motivating the search for a mean
Recently, focused electron beam induced deposition has been employed to prepare functional magnetic nanostructures with potential in nanomagnetic logic and sensing applications by using homonuclear precursor gases like Fe(CO)5 or Co2(CO)8. Here we sh
Fe-Si binary compounds have been fabricated by focused electron beam induced deposition by the alternating use of iron pentacarbonyl, Fe(CO)5, and neopentasilane, Si5H12 as precursor gases. The fabrication procedure consisted in preparing multilayer