ﻻ يوجد ملخص باللغة العربية
Recently, focused electron beam induced deposition has been employed to prepare functional magnetic nanostructures with potential in nanomagnetic logic and sensing applications by using homonuclear precursor gases like Fe(CO)5 or Co2(CO)8. Here we show that an extension towards the fabrication of bi-metallic compounds is possible by using a single-source heteronuclear precursor gas. We have grown CoFe alloy magnetic nanostructures from the HFeCo3(CO)12 metal carbonyl precursor. The compositional analysis indicate that the samples contain about 80 at% of metal and 10 at% of carbon and oxygen. Four-probe magnetotransport measurements are carried out on nanowires of various sizes down to a width of 50 nm, for which the room temperature resistivity of 43~$muOmega$cm is found. Micro-Hall magnetometry reveals that 50~nm$times$250~nm nanobars of the material are ferromagnetic up to the highest measured temperature of 250 K. Finally, the TEM microstructural investigation shows that the deposits consist of a bcc Co-Fe phase mixed with a FeCo2O4 spinel oxide phase with nanograins of about 5 nm diameter.
In the majority of cases nanostructures prepared by focused electron beam induced deposition (FEBID) employing an organometallic precursor contain predominantly carbon-based ligand dissociation products. This is unfortunate with regard to using this
Focused electron beam induced deposition (FEBID) is a direct-write method for the fabrication of nanostructures whose lateral resolution rivals that of advanced electron lithography but is in addition capable of creating complex three-dimensional nan
We demonstrate the use of individual magnetic nanowires (NWs), grown by focused electron beam induced deposition (FEBID), as scanning magnetic force sensors. Measurements of their mechanical susceptibility, thermal motion, and magnetic response show
Superconducting nanowires can be fabricated by decomposition of an organometallic gas using a focused beam of Ga ions. However, physical damage and unintentional doping often results from the exposure to the ion beam, motivating the search for a mean
Fe-Si binary compounds have been fabricated by focused electron beam induced deposition by the alternating use of iron pentacarbonyl, Fe(CO)5, and neopentasilane, Si5H12 as precursor gases. The fabrication procedure consisted in preparing multilayer